A LITERATURE REVIEW OF KEY FINDINGS IN FUNDAMENTAL FOREST FIRE RESEARCH
Abstract
Keywords
Full Text:
PDFReferences
S. Fares et al., “Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region,” Ann. For. Sci., vol. 74, no. 1, 2017, doi: 10.1007/s13595-016-0599-5.
M. Finney, S. McAllister, T. Grumstrup, and J. Forthofer, Wildland Fire Behaviour:Dynamics, Principles and Processes. 2021.
J. V. Celebrezze, I. Boving, and M. A. Moritz, “Tissue-Level Flammability Testing: A Review of Existing Methods and a Comparison of a Novel Hot Plate Design to an Epiradiator Design,” Fire, vol. 6, no. 4, 2023, doi: 10.3390/fire6040149.
J. Morgan Varner, J. M. Kane, J. K. Kreye, and E. Engber, “The flammability of forest and woodland litter: A synthesis,” Curr. For. Reports, vol. 1, no. 2, pp. 91–99, 2015, doi: 10.1007/s40725-015-0012-x.
A. L. Behm, M. L. Duryea, A. J. Long, and W. C. Zipperer, “Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland-urban interface,” Int. J. Wildl. Fire, vol. 13, no. 3, pp. 355–365, 2004, doi: 10.1071/WF03075.
J. Madrigal, E. Marino, M. Guijarro, C. Hernando, and C. Díez, “Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning,” Ann. For. Sci., vol. 69, no. 3, pp. 387–397, 2012, doi: 10.1007/s13595-011-0165-0.
M. A. Finney, S. S. Mcallister, T. Grumstrup, and J. M. Forthofer, “Combustion,” in Wildland Fire Behaviour: Dynamics, Principles and Processes, 2021, pp. 82–113.
G. Della Rocca et al., “Possible land management uses of common cypress to reduce wildfire initiation risk: A laboratory study,” J. Environ. Manage., vol. 159, pp. 68–77, 2015, doi: 10.1016/j.jenvman.2015.05.020.
J. Madrigal, M. Guijarro, C. Hernando, C. Díez, and E. Marino, “Effective Heat of Combustion for Flaming Combustion of Mediterranean Forest Fuels,” Fire Technol., vol. 47, no. 2, pp. 461–474, 2011, doi: 10.1007/s10694-010-0165-x.
R. H. White and W. C. Zipperer, “Testing and classification of individual plants for fire behaviour: Plant selection for the wildlandurban interface,” Int. J. Wildl. Fire, vol. 19, no. 2, pp. 213–227, 2010, doi: 10.1071/WF07128.
R. M. Hadden, “Heat Release Rate BT - Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires,” S. L. Manzello, Ed. Cham: Springer International Publishing, 2020, pp. 603–610.
H. E. Anderson, “Forest fuel ignitibility,” Fire Technol., vol. 6, no. 4, pp. 312–319, 1970, doi: 10.1007/BF02588932.
R. Martin, “Assessing the flammability of domestic and wildland vegetation,” 12th Conf. Fire For. Meteorol. Jekyll Island, GA, USA, Vol. pages 26-28, no. November, pp. 26–28, 1994, doi: 10.13140/RG.2.1.3999.3680.
M. Janssens, “Calorimetry BT - SFPE Handbook of Fire Protection Engineering,” in SFPE Handbook of Fire Protection Engineering, M. J. Hurley, D. Gottuk, J. R. Hall, K. Harada, E. Kuligowski, M. Puchovsky, J. Torero, J. M. Watts, and C. Wieczorek, Eds. New York, NY: Springer New York, 2016, pp. 905–951.
C. F. Schemel, A. Simeoni, H. Biteau, J. D. Rivera, and J. L. Torero, “A calorimetric study of wildland fuels,” Exp. Therm. Fluid Sci., vol. 32, no. 7, pp. 1381–1389, 2008, doi: 10.1016/j.expthermflusci.2007.11.011.
P. Bartoli, A. Simeoni, H. Biteau, J. L. Torero, and P. A. Santoni, “Determination of the main parameters influencing forest fuel combustion dynamics,” Fire Saf. J., vol. 46, no. 1–2, pp. 27–33, 2011, doi: 10.1016/j.firesaf.2010.05.002.
P. A. Santoni, E. Romagnoli, N. Chiaramonti, and T. Barboni, “Scale effects on the heat release rate, smoke production rate, and species yields for a vegetation bed,” J. Fire Sci., vol. 33, no. 4, pp. 290–319, 2015, doi: 10.1177/0734904115591176.
J. Madrigal, C. Hernando, M. Guijarro, C. DÃez, E. Marino, and A. J. De Castro, “Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device,” J. Fire Sci., vol. 27, no. 4, pp. 323–342, 2009, doi: 10.1177/0734904109102030.
O. M. Melnik et al., “New in-flame flammability testing method applied to monitor seasonal changes in live fuel,” Fire, vol. 5, no. 1, pp. 1–29, 2022, doi: 10.3390/fire5010001.
V. Babrauskas, “Ignition of Wood: A Review of the State of the Art,” J. Fire Prot. Eng., vol. 12, no. 3, pp. 163–189, 2002, doi: 10.1177/10423910260620482.
B. Y. Lattimer, “Heat Transfer from Fires,” in Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, S. L. Manzello, Ed. Cham: Springer International Publishing, 2018, pp. 1–10.
A. Simeoni et al., “Flammability studies for wildland and wildland-urban interface fires applied to pine needles and solid polymers,” Fire Saf. J., vol. 54, pp. 203–217, 2012, doi: 10.1016/j.firesaf.2012.08.005.
A. Lamorlette, M. El Houssami, J. C. Thomas, A. Simeoni, and D. Morvan, “A dimensional analysis of forest fuel layer ignition model: Application to the ignition of pine needle litters,” J. Fire Sci., vol. 33, no. 4, pp. 320–335, Jul. 2015, doi: 10.1177/0734904115591177.
F. X. Jervis and G. Rein, “Experimental study on the burning behaviour of Pinus halepensis needles using small-scale fire calorimetry of live, aged and dead samples,” Fire and Materials, vol. 40, no. 3. pp. 385–395, 2016, doi: 10.1002/fam.2293.
D. R. Weise, R. H. White, F. C. Beall, and M. Etlinger, “Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation,” Int. J. Wildl. Fire, vol. 14, no. 3, pp. 321–338, 2005, doi: 10.1071/WF04035.
R. R. Blank, R. H. White, and L. H. Ziska, “Combustion properties of Bromus tectorum L.: Influence of ecotype and growth under four CO2 concentrations,” Int. J. Wildl. Fire, vol. 15, no. 2, pp. 227–236, 2006, doi: 10.1071/WF05055.
A. C. Dibble, R. H. White, and P. K. Lebow, “Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: Invasive versus non-invasive plants,” Int. J. Wildl. Fire, vol. 16, no. 4, pp. 426–443, 2007, doi: 10.1071/WF05103.
T. Fateh, F. Richard, B. Batiot, T. Rogaume, J. Luche, and J. Zaida, “Characterization of the burning behavior and gaseous emissions of pine needles in a cone calorimeter - FTIR apparatus,” Fire Saf. J., vol. 82, pp. 91–100, 2016, doi: 10.1016/j.firesaf.2016.03.008.
I. Fernández-Gómez et al., “Characterization of forest fuels in a Mass Loss Calorimeter by short open-path FTIR spectroscopy,” J. Quant. Spectrosc. Radiat. Transf., vol. 112, no. 3, pp. 519–530, 2011, doi: 10.1016/j.jqsrt.2010.10.004.
J. Madrigal, C. Hernando, and M. Guijarro, “A new bench-scale methodology for evaluating the flammability of live forest fuels,” J. Fire Sci., vol. 31, no. 2, pp. 131–142, 2013, doi: 10.1177/0734904112458244.
M. Possell and T. L. Bell, “The influence of fuel moisture content on the combustion of Eucalyptus foliage,” Int. J. Wildl. Fire, vol. 22, no. 3, pp. 343–352, 2013, doi: 10.1071/WF12077.
S. McAllister, I. Grenfell, A. Hadlow, W. M. Jolly, M. Finney, and J. Cohen, “Piloted ignition of live forest fuels,” Fire Saf. J., vol. 51, pp. 133–142, 2012, doi: 10.1016/j.firesaf.2012.04.001.
F. Z. Sabi et al., “Ignition/non-ignition phase transition: A new critical heat flux estimation method,” Fire Saf. J., vol. 119, no. April 2020, p. 103257, 2021, doi: 10.1016/j.firesaf.2020.103257.
Robert E. Keane, Wildland Fuel Fundamentals and Applications. Springer, 2015.
B. M. Pickett, C. Isackson, R. Wunder, T. H. Fletcher, B. W. Butler, and D. R. Weise, “Experimental measurements during combustion of moist individual foliage samples,” Int. J. Wildl. Fire, vol. 19, no. 2, pp. 153–162, 2010, [Online]. Available: https://doi.org/10.1071/WF07121.
D. R. Prince and T. H. Fletcher, “Differences in burning behavior of live and dead leaves, Part 1: Measurements,” Combust. Sci. Technol., vol. 186, no. 12, pp. 1844–1857, 2014, doi: 10.1080/00102202.2014.923412.
W. M. Jolly et al., “Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack,” For. Ecol. Manage., vol. 269, pp. 52–59, Apr. 2012, doi: 10.1016/j.foreco.2011.12.022.
S. C. Ferguson, A. Dahale, B. Shotorban, S. Mahalingam, and D. R. Weise, “The role of moisture on combustion of pyrolysis gases in wildland fires,” Combust. Sci. Technol., vol. 185, no. 3, pp. 435–453, 2013, doi: 10.1080/00102202.2012.726666.
P. Pinto et al., “Effects of wildland fuel moisture content on radiant heat flux emitted by a laminar non-premixed flame,” Appl. Therm. Eng., vol. 181, no. September, p. 115968, 2020, doi: 10.1016/j.applthermaleng.2020.115968.
G. Zhou, Y. Zhou, S. Yu, S. Bai, and F. Lu, “Schima superba as a fuelbreak: Litter combustibility of three tree species with five water content levels using a cone calorimeter,” Front. For. China, vol. 4, no. 2, pp. 178–184, 2009, doi: 10.1007/s11461-009-0022-6.
M. L. Ramadhan, S. Zarate, J. Carrascal, A. F. Osorio, and J. P. Hidalgo, “Effect of fuel bed size and moisture on the flammability of Eucalyptus saligna leaves in cone calorimeter testing,” Fire Saf. J., vol. 120, no. January, p. 103016, 2021, doi: 10.1016/j.firesaf.2020.103016.
N. May and M. J. Gollner, “Fire Emissions,” in Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, Tokyo: Springer, 2020, p. 1210.
P. Mindykowski, A. Fuentes, J. L. Consalvi, and B. Porterie, “Piloted ignition of wildland fuels,” Fire Saf. J., vol. 46, no. 1–2, pp. 34–40, 2011, doi: 10.1016/j.firesaf.2010.09.003.
V. Tihay-Felicelli, P. A. Santoni, T. Barboni, and L. Leonelli, “Autoignition of Dead Shrub Twigs: Influence of Diameter on Ignition,” Fire Technol., vol. 52, no. 3, pp. 897–929, 2016, doi: 10.1007/s10694-015-0514-x.
S. L. Manzello, “Firebrand Processes in Wildland Fires and Wildland-Urban Interface (WUI) Fires BT - Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires,” S. L. Manzello, Ed. Cham: Springer International Publishing, 2019, pp. 1–6.
S. L. Manzello, S. H. Park, S. Suzuki, J. R. Shields, and Y. Hayashi, “Experimental investigation of structure vulnerabilities to firebrand showers,” Fire Saf. J., vol. 46, no. 8, pp. 568–578, 2011, doi: 10.1016/j.firesaf.2011.09.003.
N. Hernández, A. Fuentes, J. L. Consalvi, and J. C. Elicer-Cortés, “Spontaneous ignition of wildland fuel by idealized firebrands,” Exp. Therm. Fluid Sci., vol. 95, no. January, pp. 88–95, 2018, doi: 10.1016/j.expthermflusci.2018.01.037.
P. Reszka et al., “Ignition delay times of live and dead pinus radiata needles,” Fire Saf. J., vol. 112, no. September 2019, 2020, doi: 10.1016/j.firesaf.2020.102948.
F. R. Scarff, B. F. Gray, and M. Westoby, “Exploring phosphate effects on leaf flammability using a physical chemistry model,” Int. J. Wildl. Fire, vol. 21, no. 8, pp. 1042–1051, 2012, doi: 10.1071/WF09065.
H. Fazeli, W. M. Jolly, and D. L. Blunck, “Stages and time-scales of ignition and burning of live fuels for different convective heat fluxes,” Fuel, vol. 324, no. PA, p. 124490, 2022, doi: 10.1016/j.fuel.2022.124490.
G. Rein, “Smouldering Combustion Phenomena in Science and Technology,” Int. Rev. Chem. Eng., vol. 1, pp. 3–18, 2009, [Online]. Available: http://www.era.lib.ed.ac.uk/handle/1842/1152.
DOI: https://doi.org/10.22190/FUWLEP240213003M
Refbacks
- There are currently no refbacks.
ISSN 0354-804X (Print)
ISSN 2406-0534 (Online)