NONLINEAR VIBRATION OF A BEAM SUBJECTED TO MECHANICAL IMPACT AND WINKLER-PASTERNAK FOUNDATION
Abstract
The simultaneous effects of mechanical impact and Winkler-Pasternak foundation on the dynamic response of an Euler-Bernoulli beam are studied. By means of the Galerkin-Bubnov procedure, the governing equation with partial derivatives is reduced to an ordinary differential equation. This nonlinear equation is solved by means of the Optimal Homotopy Asymptotic Method (OHAM).
Keywords
Full Text:
PDFReferences
Ansari M., Esmailzadeh E., Younesian D., Internal-external resonance of beams on nonlinear viscoelastic foundation traversed by moving load, Nonlinear Dynamics, 31, pp.1163-1182, doi:10.1007/s11071-009-9639-0, https://link.springer.com/article/10.1007/s11071-009-9639-0
Abiala I.O.: Finite element evaluation of the dynamic response of beams under uniformly distributed moving loads, Journal of Natural Sciences, Engineering and Technology, 8, pp. 95-105, doi:10.51406/jnset.v8i1.983, https://journal.funaab.edu.ng/index.php/JNSET/article/view/983
Ding H., Chen L.Q., Pyang S.: Convergence of Galekin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, Journal of Sound and Vibration, 331, pp. 2426-2442, doi:10.1016/j.jsv.2011.12.036,https://www.sciencedirect.com/science/article/abs/pii/S0022460X12000041?via%3Dihub
Nbendjo B.R.N., Woafo P.: Modelling of the dynamic of Euler’s beam by Φ6 potential, Mechanics Research Communications, 38, pp.542-545, doi:10.1016/j.mechrescom.2011.07.010, https://www.sciencedirect.com/science/article/abs/pii/S0093641311001510?via%3Dihub
Poorjamshidian M., Sheikhi J., Moghadas S.M., Nakhaie M.: Nonlinear vibration analysis of the beam carrying a moving mass using modified homotopy, Journal of Solid Mechanics, 6, pp. 389-396, https://sanad.iau.ir/journal/jsm/Article/514611?jid=514611
Pirmoradian M., Karinpour H..: Parametric resonance and jump analysis of a beam subjected to a periodic mass transition, Nonlinear Dynamics, 89, pp. 2141-2154, doi:10.1007/s11071-017-3575-1, https://link.springer.com/article/10.1007/s11071-017-3575-1
Shariati A., Jung D.W., Sedighi H.M., Zur H.K., Habibi M., Safa M.: Stability and dynamic of viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters, Symmetry 12, 586, doi:10.3390/sym12040586, https://www.mdpi.com/2073-8994/12/4/586
Herisanu N., Marinca V.: Effect of mechanical impact and electromagnetic actuation on the nonlinear vibration of a beam, Springer Proceedings in Physics, 302, pp. 19-28, doi:10.1007/978-3-031-48087-4, https://link.springer.com/chapter/10.1007/978-3-031-48087-4_3
Marinca V. and Herisanu N., The Optimal Homotopy Asymptotic Method. Engineering Applications, Springer, Cham 2015.
Marinca V., Herisanu N.: The Optimal Homotopy Asymptotic Method for solving Blasius equation, Applied Mathematics and Computation, 231, pp. 134-139, doi:10.1016/j.amc.2013.12.121, https://www.sciencedirect.com/science/article/abs/pii/S0096300313014112
Herisanu N., Marinca V.: Explicit analytical approximation to large amplitude nonlinear oscillations of an uniform cantilever beam carrying an intermediate lumped mass and rotary inertia, Meccanica, 45, pp. 847-855, doi:10.1007/s11012-010-9293-0, https://link.springer.com/article/10.1007/s11012-010-9293-0
DOI: https://doi.org/10.22190/FUWLEP240924038H
Refbacks
- There are currently no refbacks.
ISSN 0354-804X (Print)
ISSN 2406-0534 (Online)