NONLINEAR VIBRATION OF A BEAM SUBJECTED TO MECHANICAL IMPACT AND WINKLER-PASTERNAK FOUNDATION

Nicolae Herisanu, Bogdan Marinca, Vasile Marinca

DOI Number
https://doi.org/10.22190/FUWLEP240924038H
First page
401
Last page
408

Abstract


The simultaneous effects of mechanical impact and Winkler-Pasternak foundation on the dynamic response of an Euler-Bernoulli beam are studied. By means of the Galerkin-Bubnov procedure, the governing equation with partial derivatives is reduced to an ordinary differential equation. This nonlinear equation is solved by means of the Optimal Homotopy Asymptotic Method (OHAM).


Keywords

nonlinear vibration, OHAM, mechanical impact, Winkler-Pasternak foundation

Full Text:

PDF

References


Ansari M., Esmailzadeh E., Younesian D., Internal-external resonance of beams on nonlinear viscoelastic foundation traversed by moving load, Nonlinear Dynamics, 31, pp.1163-1182, doi:10.1007/s11071-009-9639-0, https://link.springer.com/article/10.1007/s11071-009-9639-0

Abiala I.O.: Finite element evaluation of the dynamic response of beams under uniformly distributed moving loads, Journal of Natural Sciences, Engineering and Technology, 8, pp. 95-105, doi:10.51406/jnset.v8i1.983, https://journal.funaab.edu.ng/index.php/JNSET/article/view/983

Ding H., Chen L.Q., Pyang S.: Convergence of Galekin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, Journal of Sound and Vibration, 331, pp. 2426-2442, doi:10.1016/j.jsv.2011.12.036,https://www.sciencedirect.com/science/article/abs/pii/S0022460X12000041?via%3Dihub

Nbendjo B.R.N., Woafo P.: Modelling of the dynamic of Euler’s beam by Φ6 potential, Mechanics Research Communications, 38, pp.542-545, doi:10.1016/j.mechrescom.2011.07.010, https://www.sciencedirect.com/science/article/abs/pii/S0093641311001510?via%3Dihub

Poorjamshidian M., Sheikhi J., Moghadas S.M., Nakhaie M.: Nonlinear vibration analysis of the beam carrying a moving mass using modified homotopy, Journal of Solid Mechanics, 6, pp. 389-396, https://sanad.iau.ir/journal/jsm/Article/514611?jid=514611

Pirmoradian M., Karinpour H..: Parametric resonance and jump analysis of a beam subjected to a periodic mass transition, Nonlinear Dynamics, 89, pp. 2141-2154, doi:10.1007/s11071-017-3575-1, https://link.springer.com/article/10.1007/s11071-017-3575-1

Shariati A., Jung D.W., Sedighi H.M., Zur H.K., Habibi M., Safa M.: Stability and dynamic of viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters, Symmetry 12, 586, doi:10.3390/sym12040586, https://www.mdpi.com/2073-8994/12/4/586

Herisanu N., Marinca V.: Effect of mechanical impact and electromagnetic actuation on the nonlinear vibration of a beam, Springer Proceedings in Physics, 302, pp. 19-28, doi:10.1007/978-3-031-48087-4, https://link.springer.com/chapter/10.1007/978-3-031-48087-4_3

Marinca V. and Herisanu N., The Optimal Homotopy Asymptotic Method. Engineering Applications, Springer, Cham 2015.

Marinca V., Herisanu N.: The Optimal Homotopy Asymptotic Method for solving Blasius equation, Applied Mathematics and Computation, 231, pp. 134-139, doi:10.1016/j.amc.2013.12.121, https://www.sciencedirect.com/science/article/abs/pii/S0096300313014112

Herisanu N., Marinca V.: Explicit analytical approximation to large amplitude nonlinear oscillations of an uniform cantilever beam carrying an intermediate lumped mass and rotary inertia, Meccanica, 45, pp. 847-855, doi:10.1007/s11012-010-9293-0, https://link.springer.com/article/10.1007/s11012-010-9293-0




DOI: https://doi.org/10.22190/FUWLEP240924038H

Refbacks

  • There are currently no refbacks.


ISSN   0354-804X (Print)

ISSN   2406-0534 (Online)