MODELS FOR PREDICTING SOUND ABSORPTION OF POROUS MATERIALS
Abstract
Keywords
Full Text:
PDFReferences
Kurtović H., (1990), Osnovi tehničke akustike, Naučna knjiga, Beograd
Ayub M., Nor M.J.M., Amin N., Zulkifli R., Fouladi M.H., Ismail A.R., (2009), Analysis on sound absorption of natural coir fiber using Delany-Bazley model, Proceedings of the International Conference on Mechanical Engineering, Dhaka, Bangladesh, December 26-28, 2009. pp. 1-6.
Navacerrada M.Á., Díaz C., Fernández P., Characterization of a Material Based on Short Natural Fique Fibers, BioResources, Vol. 9, No. 2, 2014., pp. 3480–3496.
AL-Rahman A.L., Raja R.I., Rahman R.A., Experimental Study on Natural Fibres for Green Acoustic Absorption Materials, American Journal of Applied Sciences, Vol. 10, No. 10, 2013., pp. 1307–1314.
Wang C.-N., Torng J.-H., Experimental study of the absorption characteristics of some porous fibrous materials, Applied Acoustics, Vol. 62, No. 4, 2001., pp. 447–459.
Eaves D., (2004), Handbook of Polymer Foams, Rapra Technology Limited, Shawbury
Yamashita T., Suzuki K., Adachi H., Nishino S., Tomota Y., Effect of Microscopic Internal Structure on Sound Absorption Properties of Polyurethane Foam by X-ray Computed Tomography Observations, Materials Transactions, Vol. 50, No. 2, 2009., pp. 373–380.
Kino N., Nakano G., Suzuki Y., Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams, Applied Acoustics, Elsevier Ltd, Vol. 73, No. 2, 2012., pp. 95–108.
Pompoli F., Bonfiglio P., (2007), Acoustical properties of polyurethane open cells materials: Experimental investigation and theoretical models, Proceedings of the 14th International Congres of Sound and Vibration - ICSV14, Cairns, Australia, July 9-12, 2007.
Vuković J., Pergal M., Jovanović S., Vodnik V., Umreženi poliuretani na bazi hiperrazgranatih polimera, Hemijska Industrija, Vol. 62, No. 6, 2008., pp. 353–359.
Pfretzschner, J. and Rodriquez, R.M. (1999) Acoust Properties of Rubber Crumbs. Polymer Testing, 18, 81-92. http://dx.doi.org/10.1016/S0142-9418(98)00009-9
Swift M.J., Bris P., Horoshenkov K. V., Acoustic absorption in re-cycled rubber granulate, Applied Acoustics, Vol. 57, No. 3, 1999., pp. 203–212.
Han Z., Chunsheng L., Kombe T., Thong-On N., Crumb rubber blends in noise absorption study, Materials, and Structures, Vol. 41, No. 2, 2008., p. 383–390.
Radičević B., Ristanović I., (2014), Koeficijent apsorpcije materijala od recikliranog gumenog otpada, Zbornik 58. konferencije za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku - ETRAN, Vrnjačka Banja, Srbija, Jun 2-5, 2014.
Zainulabidin M.H., Abdul Rani M.H., Nezere N., Mohd Tobi A.L., Optimum Sound Absorption by Materials Fraction Combination, International Journal of Mechanical and Mechatronics Engineering, Vol. 14, No. 2, 2014., pp. 118–121.
Theophilus E.O., Febresima R.C., Mbaka K.V., Analysis of sound absorbing properties of different density local acoustic materials, International Journal of Educational Research and Reviews, Vol. 3, No. 4, 2015., pp. 180–182.
Mahzan S., Ahmad Zaidi A.M., Ghazali M.I., Yahya M.N., Ismail M., (2009), Investigation on Sound Absorption of Rice-Husk Reinforced Composite, Proceedings of MUCEET, 2009.
Dragonetti R., Ianniello C., Romano R.A., Measurement of the resistivity of porous materials with an alternating air-flow method, The Journal of the Acoustical Society of America, Vol. 129, No. 2, 2011., pp. 753–764.
Joshi M.P., Shravage P., Jain S.K., Karanth N. V., A Comparative Study on Flow Resistivity for Different Polyurethane Foam Samples, Journal of Acoustical Society of India, Vol. 38, No. 4, 2011., pp. 153–157.
Garai M., Pompoli F., (2001), An Intercomparison of Laboratory Measurements of Flow Resistance, International Congres on Acoustics, Rome, Italy, 2001.
Ingard K.U., Dear T.A., Measurement of acoustic flow resistance, Journal of Sound and Vibration, Vol. 103, No. 4, 1985., pp. 567–572.
Garai M., Pompoli F., A simple empirical model of polyester fiber materials for acoustical applications, Applied Acoustics, Vol. 66, No. 12, 2005., pp. 1383–1398.
Bies D.A., Hansen C.H., Flow Resistance Information for Acoustical Design, Applied Acoustics, Vol. 13, No. 5, 1980., pp. 357–391.
Kino N., Ueno T., Comparisons between characteristic lengths and fiber equivalent diameters in glass fiber and melamine foam materials of similar flow resistivity, Applied Acoustics, Vol. 69, No. 4, 2008., pp. 325–331.
Tarnow V., Airflow resistivity of models of fibrous acoustic materials, The Journal of the Acoustical Society of America, Vol. 100, No. 6, 1996., pp. 3706–3713.
EN ISO 10534-2:2001, Determination of sound absorption coefficient and impedance in impedance tubes - Part 2: Transfer - function method
Yaniv SL., Impedance measurement of propagation constant and characteristic impedance of porous acoustical material, The Journal of the Acoustical Society of America, Vol. 54, 1973., pp. 1138–1142.
Utsuno H, Tanaka T, Fujikawa T, Seybert AF., Transfer function method for measuring characteristic impedance and propagation constant of porous materials, The Journal of the Acoustical Society of America, Vol. 86, 1989., pp. 637–643.
Delany M.E., Bazley E.N., Acoustical properties of fibrous absorbent materials, Applied Acoustics, Vol. 3, No. 2, 1970., pp. 105–116.
Dunn I.P., Davern W.A., Calculation of acoustic impedance of multi-layer absorbers, Applied Acoustics, Vol. 19, No. 5, 1986., pp. 321–334.
Voronina N., Acoustic properties of fibrous materials, Applied Acoustics, Vol. 42, No. 2, 1994., pp. 165–174.
Voronina N., Improved Empirical Model of Sound Propagation Through a Fibrous Material, Applied Acoustics, Vol. 48, No. 2, 1996., pp. 121–132.
Gardner G.C., O’Leary M.E., Hansen S., Sun J.Q., Neural networks for prediction of acoustical properties of polyurethane foams, Applied Acoustics, Vol. 64, No. 2, 2003., pp. 229–242.
Hamet JF., Mode´lisation Acoustique dÕun enrobe´ Drainant, Bron: Rapport INRETS, 1992.
Biot MA., Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. II. Higher frequency range., The Journal of the Acoustical Society of America, Vol. 28, 1956., pp.168–191.
Lambert RF., The acoustical structure of highly porous open-cell foams. The Journal of the Acoustical Society of America, Vol. 72, No. 3, 1982., pp. 879–887.
Zwikker C, Kosten CW., (1949), Sound Absorbing Materials, Elsevier, New York
Allard JF, Depollier C, Nicolas J, Lauriks W., Cops A., Proprie´te´s acoustiques des mate´riaux poreux sature´s dÕair et the´orie de Biot, Journal of Acoustics, Vol. 3, 1990., pp. 29–38.
Champoux Y, Stinson MR., On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors. The Journal of the Acoustical Society of America, Vol. 92, No. 2, 1992., pp. 1120–1131.
Radičević B., Development of a decision-making model for the selection of the optimal mixture of sound absorbing materials, Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, PhD Dissertation, 2016.
Atalla Y. Paneton R., Inverse characterization of the geometrical macroscopic parameters of porous materials, Canadian Acoustics, Vol. 33, 2005., pp. 11-24.
Allard JF, Champoux Y., New empirical equations for sound propagation in rigid frame Fibrous materials, The Journal of the Acoustical Society of America, Vol. 91, 1992., pp. 3346-3353.
Atalla Y, Panneton R., Inverse acoustical characterization of open cell porous media using impedance tube materials, Canadian Acoustics, Vol. 33, No. 1, 2005., pp. 11-24.
Pelegrins MT, Horoshenkov KV, Burnett A., An application of Kozeny-Carman flow resistivity model to predict the acoustical properties of polyester fiber, Applied Acoustics, Vol. 101, 2016., pp. 1-4.
Cobo P, Simon F., A comparison of impedance models for the inverse estimation of the npn-acoustical parameters of granular absorbers, Applied Acoustics, Vol. 104, 2015., pp. 119-126.
Bonfiglio P, Pompoli F., Inversion problems for determining physical parameters of porous materials: Overview and Comparison Between Different Methods, Acta Acustica United with Acustica, Vol. 99, No. 3, 2013., pp. 341-351.
Kino N., Further investigations of empirical improvements to the Johnson-Champoux-Allard model, Applied Acoustics, Vol. 96, 2015., pp 153-170.
Garg N., Kumar A., Maji S., Parametric Sensitivity Analysis of Factors Affecting Sound Transmission Loss of Multi-Layered Building Elements Using Taguchi Method, Archives of Acoustics, Vol. 39, No. 2, 2014., pp. 165–176.
Xiaomei X., Ping L., Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm, Plos One, Vol. 16, No. 5, 2021.
DOI: https://doi.org/10.22190/FUWLEP241023020R
Refbacks
- There are currently no refbacks.
ISSN 0354-804X (Print)
ISSN 2406-0534 (Online)