SENSING WITH SOUND: IMPROVING GASES AND SOLID ANALYSIS BY PHOTOACOUSTIC SPECTROSCOPY
Abstract
The development of photoacoustic spectroscopy is being driven by the growing demand for precise, efficient, and reliable detection methods that can be used for in situ measurements and real-time monitoring. Along with rapid technological progress, photoacoustic spectroscopy became an ultra-sensitive, selective, cost-effective technique that can meet the demanding requirements for environmental monitoring, industrial safety, and medical diagnostics. This paper highlights how continuous improvements in photoacoustic technologies, including the use of appropriate laser sources as well as sensing elements, and machine learning methods, are pushing the limits of gases and solid analysis and providing critical tools for addressing modern scientific and industrial challenges.
Keywords
Full Text:
PDFReferences
Sigrist M.W. Bartlome R. Marinov D., et al. (2008). Trace gas monitoring with infrared laser-based detection schemes. Applied Physics B, 90, 289–300. DOI: 10.1007/s00340-007-2875-4. https://doi.org/10.1007/s00340-007-2875-4 .
Tam, A. C. (1986). Applications of photoacoustic sensing techniques. Reviews of Modern Physics, 58, pp. 381 - 431, DOI:10.1103/RevModPhys.58.381. https://doi.org/10.1103/RevModPhys.58.381
Biswas, D., Roy, S., Vasudevan, S., (2022). Biomedical Application of Photoacoustics: A Plethora of Opportunities. Micromachines, 13, p. 1900. DOI:10.3390/mi13111900. https://doi.org/10.3390/mi13111900
L. B. Kreuzer, (1971). Ultralow gas concentration infrared absorption spectroscopy, Journal of Applied Physics, 42, pp. 2934–2943. https://doi.org/10.1063/1.1660651
Miklós, A., Hess, P., Bozóki, Z., (2001). Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Review of Scientific Instruments, 72, pp. 1937-1955, DOI:10.1063/1.1353198. https://doi.org/10.1063/1.1353198
Sampaolo, A., Patimisco, P., Giglio, M. et al. (2022). Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: A review. Analytica Chimica Acta, 1202, p. 338894. DOI: 10.1016/j.aca.2021.338894. https://doi.org/10.1016/j.aca.2021.338894
De Palo, R., Elefante, A., Biagi, G. et al., (2023). Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants. Advanced Photonics Research, 4, p. 2200353. DOI:10.1002/adpr.202200353. https://doi.org/10.1002/adpr.202200353
Lin, C., Yan, X., Huang. Y. (2022). An all-optical off-beam quartz-enhanced photoacoustic spectroscopy employing double-pass acoustic microresonators. Optics Communications, 503, p. 127447. DOI: 10.1016/j.optcom.2021.127447. https://doi.org/10.1016/j.optcom.2021.127447
Yin, X., Dong L., Wu, H. et al., (2017). Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser. Sensors and Actuators B: Chemical, 247, pp. 329-335. DOI:10.1016/j.snb.2017.03.058. https://doi.org/10.1016/j.snb.2017.03.058
Olivieri, M.; Menduni, G.; Giglio, M. et al., (2023). Characterization of H2S QEPAS detection in methane-based gas leaks dispersed into environment, Photoacoustics, 29, p. 100438, DOI:10.1016/j.pacs.2022.100438. https://doi.org/10.1016/j.pacs.2022.100438
Sgobba, F., Sampaolo, A., Patimisco, P. et al. (2022). Compact and portable quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide environmental monitoring in urban areas, Photoacoustics, 25, p. 100318. DOI:10.1016/j.pacs.2021.100318. https://doi.org/10.1016/j.pacs.2021.100318
Zheng, H., Dong, L., Liu, X. et al., (2015). Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection. Laser Physics, 25, p.125601, DOI:10.1088/1054-660X/25/12/125601. https://dx.doi.org/10.1088/1054-660X/25/12/125601.
Pushkarsky, M., Webber, M., Baghdassarian, O., Narasimhan L.R., Patel. C.K.N. (2002). Laser-based photoacoustic ammonia sensors for industrial applications. Applied Physics B, 75, pp. 391–396. DOI:10.1007/s00340-002-0967-8. https://doi.org/10.1007/s00340-002-0967-8
Kinjalk, K., Paciolla, P., Sun B. et al., (2024). Highly selective and sensitive detection of volatile organic compounds using long wavelength InAs-based quantum cascade lasers through quartz-enhanced photoacoustic spectroscopy. Applied Physics Reviews, 11, p. 021427, DOI:10.1063/5.0189501. https://doi.org/10.1063/5.0189501
Wilcken, K., Kauppinen, J. (2003). Optimization of a microphone for photoacoustic spectroscopy. Applied Spectroscopy 57, pp. 1087–1092. DOI:10.1366/00037020360695946. https://doi.org/10.1366/00037020360695946
Abad, B., Borca-Tasciuc D.-A., Martin-Gonzalez M.S., (2017). Non-contact methods for thermal properties measurement, Renewable and Sustainable Energy Reviews, 76, pp. 1348-1370. DOI:10.1016/j.rser.2017.03.027. https://doi.org/10.1016/j.rser.2017.03.027
Rosencwaig, A., Gersho, A. (1976). Theory of the photoacoustic effect with solids, Journal of Applied Physics, 47, pp. 64-69. DOI: 10.1063/1.322296. https://doi.org/10.1063/1.322296
McDonald, F. A., Wetsel Jr, G. C., (1978). Generalized theory of the photoacoustic effect, Journal of Applied Physics, 49, pp. 2313-2322. DOI:10.1063/1.325116. https://doi.org/10.1063/1.325116
Nikolić, P.M., Todorović, D.M, (1989). Photoacoustic and electroacoustic properties of semiconductors. Progress in Quantum Electronics, 13, pp. 107-189, DOI:10.1016/0079-6727(89)90006-2. https://doi.org/10.1016/0079-6727(89)90006-2
Todorovic, D.M., Rabasovic, M.D., Markushev, D.D. et al. (2015). Photoacoustic Elastic Bending Method: Characterization of Thin Films on Silicon Membranes, International Journal of Thermophysics, 36, pp. 1016–1028. DOI:10.1007/s10765-014-1801-3. https://doi.org/10.1007/s10765-014-1801-3
Markushev, D. K., Markushev, D. D., Aleksić, S. M. et al. (2022). Enhancement of the thermoelastic component of the photoacoustic signal of silicon membranes coated with a thin TiO2 film, Journal of Applied Physics, 131, p. 085105. DOI:10.1063/5.0079902. https://doi.org/10.1063/5.0079902
Todorović, D. M., Rabasović, M. D., Markushev, D. D., Sarajlić M., (2014). Photoacoustic elastic bending in thin film–substrate system: Experimental determination of the thin film parameters, Journal of Applied Physics 116, p. 053506. DOI:10.1063/1.4890346. https://doi.org/10.1063/1.4890346
Galovic, S.P., Stanimirovic, Z., Stanimirovic, I., et al. (2024). Time-resolved photoacoustic response of thin solids measured using minimal volume cell, International Communications in Heat and Mass Transfer, 155, p. 107574. DOI:10.1016/j.icheatmasstransfer.2024.107574 https://doi.org/10.1016/j.icheatmasstransfer.2024.107574
Krishnaswamy, S. (2008). Photoacoustic Characterization of Materials. Springer Handbook of Experimental Solid Mechanics. Springer, 769-800. ISBN 978-0-387-26883-5 https://doi.org/10.1007/978-0-387-30877-7_27
Swapna, M.S., Sankararaman, S., Korte, D. (2024). Thermal lensing and photoacoustics as potential tools for nanomaterial characterization: a review. Journal of Material Science 59, pp. 10140–10168. DOI:10.1007/s10853-024-09773-4. https://doi.org/10.1007/s10853-024-09773-4
Rabasović, D.M., Nikolić, G.M., Dramićanin, D.M., et al. (2009). Low-cost, portable photoacoustic setup for solid samples, Measurement Science and Technology 20, 095902.
DOI:10.1088/0957-0233/20/9/095902. https://dx.doi.org/10.1088/0957-0233/20/9/095902
Galovic, S., Kostoski, D. (2003). Photothermal wave propagation in media with thermal memory, Journal of Applied Physics, 93, pp. 3063–3071. https://doi.org/10.1063/1.1540741
Joseph, D.D., Preciozi, L. (1989). Heat wave, Review of Modern Physics, 61, 41. https://doi.org/10.1103/RevModPhys.61.41
Jou, D., Casas-Vazquez, J., and Lebon, G. (1988). Extendid Irreversible Thermodynamics, Reports on Progress in Physics, 51, pp. 1105-1179. DOI:10.1088/0034-4885/51/8/002. https://dx.doi.org/10.1088/0034-4885/51/8/002
Galovic, S., Soskic, Z., Popovic, M., et al. (2014). Theory of photoacoustic effect in media with thermal memory, Journal of Applied Physics, 116, p. 02491. DOI: 10.1063/1.4885458. https://doi.org/10.1063/1.4885458
Popovic, M.N., Markushev, D.D., Nesic, et al. (2021). Optically induced temperature variations in a two-layer volume absorber including thermal memory effects. Journal of Applied Physics, 129, p. 015104 https://doi.org/10.1063/5.0015898
Miletic, V. V., Popovic, M. N., Galovic, S. P., D. D. Markushev, et al. (2023). Photothermally induced temperature variations in a low-absorption sample via backside absorption. Journal of Applied Physics, 133, p. 075101. DOI: 10.1063/5.0134313. https://doi.org/10.1063/5.0134313
Djordjevic, K. Lj., Milicevic S.P., Galovic, E., et al. (2022). Photothermal Response of Polymeric Materials Including Complex Heat Capacity. International Journal of Thermophysics, 43, p. 68. https://doi.org/10.1007/s10765-022-02985-3
Korabel, N., Klages, R., Chechkin, A.V., et al., (2007). Fractal properties of anomalous diffusion in intermittent maps. Physical Review E, 75, p. 036213, https://doi.org/10.1103/PhysRevE.75.036213
Somer, A., Popovic, M.N., da Cruz, G.K. et al. (2022). Anomalous thermal diffusion in two-layer system: The temperature profile and photoacoustic signal for rear light incidence. International journal of thermal sciences, 179, p.107661. https://doi.org/10.1016/j.ijthermalsci.2022.107661
Somer, A., Galovic, S., Lenzi, E.K. et al., (2023) Temperature profile and thermal piston component of photoacoustic response calculated by the fractional dual-phase-lag heat conduction theory. International Journal of Heat and Mass Transfer, 203, p. 123801. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123801
Ding, Z., Chen, K., Song, B. et al. (2022). Observation of second sound in graphite over 200 K. Nature Communications 13, p. 285. https://doi.org/10.1038/s41467-021-27907-z
Huberman, S., Duncan, R.A., Chen, K., et al. (2019). Observation of second sound in graphite at temperatures above 100 K. Science, 364,6438, pp. 375-379. https://doi.org/10.1126/science.aav3548
Neprokin, A., Broadway, C., Myllylä, T., et al. (2022). Photoacoustic Imaging in Biomedicine and Life Sciences. Life, 12, p. 588. https://doi.org/10.3390/life12040588
Liu, H., Teng, X., Yu, S., et al. (2024). Recent Advances in Photoacoustic Imaging: Current Status and Future Perspectives. Micromachines, 15(8), 1007. DOI:10.3390/mi15081007. https://doi.org/10.3390/mi15081007
Xu, M., Wang, V. L., (2006) Photoacoustic imaging in biomedicine. Review of Scientific Instruments 77, 041101. DOI:10.1063/1.2195024. https://doi.org/10.1063/1.2195024
Zhong, H., Duan, T., Lan, H., et al. (2018). Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors, 18, p. 2264. https://doi.org/10.3390/s18072264
Bykov, A. Y., Xie, Y., Krasavin, A. V., Zayats, A.V., (2023). Nano Letters 23 (7), pp. 2786-2791. https://doi.org/10.1021/acs.nanolett.3c00063?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Dumitras, D.C., Petrus, M., Bratu, A-M, et al., (2020). Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules. 25(7) 1728. DOI:10.3390/molecules25071728. https://doi.org/10.3390/molecules25071728
Henderson, B., Khodabakhsh, A., Metsälä, M. et al. (2018). Laser spectroscopy for breath analysis: towards clinical implementation. Applied Physics B 124, 161. DOI:10.1007/s00340-018-7030-x. https://doi.org/10.1007/s00340-018-7030-x
Djordjevic, K. Lj., Markushev, D. D., Ćojbašić, Ž. M., (2020). Inverse problem solving in semiconductor photoacoustics by neural networks. Inverse Problems in Science and Engineering, 29 (2), pp. 248–262. DOI:10.1080/17415977.2020.1787405. https://doi.org/10.1080/17415977.2020.1787405
Moeckli, M., Hilbes, C., Sigrist, M. (1998). Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm. Applied Physics B, 67, 449–458. DOI:10.1007/s003400050529. https://doi.org/10.1007/s003400050529
Rabasović, M. D., Nikolić, J. D., Markushev, D. D., (2007). Simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time by pulsed photoacoustics. Applied Physics B, 88, 309-315 (2007). DOI:10.1007/s00340-007-2697-4. https://doi.org/10.1007/s00340-007-2697-4
Lukić, M., Ćojbašić, Ž., Rabasović, M. D., et al., (2014) Computationally intelligent pulsed photoacoustics. Measurement Science and Technology 25, 125203. DOI:10.1088/0957-0233/25/12/125203.
Lukić, M., Ćojbašić, Ž., Markushev, D. (2023). Neuro fuzzy prediction of laser fluence based on photoacoustic signal analysis in different gas mixtures. Measurement, 210, p. 112533. DOI:10.1016/j.measurement.2023.112533.
Lukić, M., Ćojbašić, Ž. Markushev, D. (2021). Simulated Annealing Optimization for Inverse Problem Solving of Trace Gasses Detection by Infrared Pulsed Photoacoustic, Proceedings of 15 International conference on applied electromagnetics, ПЕС 2021, 121-124, Niš, Serbia ISBN:978-86-6125-241-9.
Lukić, M. Ćojbašić, Ž., Markushev, D. (2022). Trace gases analysis in pulsed photoacoustics based on swarm intelligence optimization. Optical and Quantum Electronics 54, p. 674. DOI:10.1007/s11082-022-04059-y. https://doi.org/10.1007/s11082-022-04059-y
Djordjevic, К.Lj., Markushev, D.D., Ćojbašić, Ž.М. et al. (2020). Photoacoustic Measurements of the Thermal and Elastic Properties of n-Type Silicon Using Neural Networks. Silicon 12, pp.1289–1300. DOI:10.1007/s12633-019-00213-6. https://doi.org/10.1007/s12633-019-00213-6
Djordjević, К.Lj., Galović, S.P., Popović, M.N. et al. (2022). Use neural network in photoacoustic measurement of thermoelastic properties of aluminum foil. Measurement, 199, 111537. DOI:10.1016/j.measurement.2022.111537. https://doi.org/10.1016/j.measurement.2022.111537
Djordjević, K.Lj., Stoisavljević, Z.Z., Dragaš, M.A.,et al., (2024). Application of neural network to study of frequency range effect to photoacoustic measurement of thermoelastic properties of thin aluminum samples. Measurement, 236, p. 115043. DOI:10.1016/j.measurement.2024.115043. https://doi.org/10.1016/j.measurement.2024.115043
Djordjević, K.L.; Markushev, D.K.; Popović, et al. (2023). Photoacoustic Characterization of TiO2 Thin-Films Deposited on Silicon Substrate Using Neural Networks. Materials 16, p. 2865. DOI:10.3390/ma16072865. https://doi.org/10.3390/ma16072865
Djordjevic, К.L., Galovic, S.P., Jordovic-Pavlovic, M.I. et al. (2020). Photoacoustic optical semiconductor characterization based on machine learning and reverse-back procedure. Optical and Quantum Electronics 52, 247. DOI:10.1007/s11082-020-02373-x. https://doi.org/10.1007/s11082-020-02373-x
Jordović-Pavlović, M.I., Stanković, M.M., Popović, M.N. et al. (2020) The application of artificial neural networks in solid-state photoacoustics for the recognition of microphone response effects in the frequency domain. Journal of Computational Electronics, 19, pp. 1268–1280. DOI:10.1007/s10825-020-01507-4. https://doi.org/10.1007/s10825-020-01507-4
Gröhl, J., Schellenberg,M., Dreher, K., et al., (2021) Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics, 22, p. 100241. DOI:10.1016/j.pacs.2021.100241. https://doi.org/10.1016/j.pacs.2021.100241
Kim, M., Jeng, G., Pelivanov I. S., et al. (2020). Deep-Learning Image Reconstruction for Real-Time Photoacoustic System. IEEE Transactions on Medical Imaging. 39 (11) pp. 3379-3390. DOI: 10.1109/TMI.2020.2993835
DOI: https://doi.org/10.22190/FUWLEP241028042L
Refbacks
- There are currently no refbacks.
ISSN 0354-804X (Print)
ISSN 2406-0534 (Online)