THE INFLUENCE OF AMBIENT CONDITIONS ON THE PERFORMANCE OF THE THERMOELECTRIC WIRELESS SENSOR NETWORK NODE

Dejan Milić, Aneta Predrag Prijić, Ljubomir Vračar, Zoran Prijić

DOI Number
https://doi.org/10.22190/FUWLEP1802089M
First page
089
Last page
100

Abstract


This paper considers the effects of the ambient temperature and unducted air flow on the voltage generated by a thermoelectric generator used to power wireless sensor network node. Structure of the node is simulated using a fully coupled numerical electro--thermal model with convective correlations. Results show that the effect of the ambient temperature is negligible as long as the temperature difference between the hot surface of the node and the ambient is maintained. For natural convection, voltage dependence on the temperature difference can be determined from the open circuit conditions and this can be used to approximate the load conditions. For forced convection, an increase rate of the generated voltage is governed by the thermal resistance of the heatsink and characteristic parameters of the thermoelectric generator.

Keywords

Thermoelectric generator, Wireless Sensor Node, Energy harvesting

Full Text:

PDF

References


Handbook of Energy Harvesting Power Supplies and Applications (eds Mateu L., Pollak M. and Spies P.) (CRC Press, 2015).

White R., Nguyen D.-S., Wu Z. and Wright P.: Atmospheric Sensors and Energy Harvesters on Overhead Power Lines, Sensors 18, 114 (Jan. 2018).

Olatinwo S. and Joubert T.-H.: Optimizing the Energy and Throughput of a

Water-Quality Monitoring System, Sensors 18, 1198 (Apr. 2018).

Prijić A., Vračar Lj., Pavlović Z., Kostić Lj. and Prijić Z.: The Effect of Flat

Panel Reflectors on Photovoltaic Energy Harvesting in Wireless Sensor Nodes Under Low Illumination Levels, IEEE Sensors Journal 15, pp. 7105-7111 (Dec. 2015).

Vračar Lj., Prijić A., Nešić D., Dević S. and Prijić Z.: Photovoltaic Energy

Harvesting Wireless Sensor Node for Telemetry Applications Optimized for Low Illumination Levels, Electronics 5, 26 (June 2016).

Woias P., Schule F., Baumke E., Mehne P. and Kroener M.: Thermal Energy

Harvesting from Wildlife, Journal of Physics: Conference Series 557, 012084 (2014).

Mehne P., Lickert F., Baumker E., Kroener M. and Woias P.: Energy-autonomous wireless sensor nodes for automotive applications, powered by

thermoelectric energy harvesting, Journal of Physics: Conference Series 773, 012041 (Nov. 2016).

Nesarajah M. and Frey G.: Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes, Applied Sciences 7, 634 (June 2017).

Prijić A., Vračar Lj., Vučković D., Milić D. and Prijić Z.: Thermal energy harvesting wireless sensor node in aluminum core PCB technology, IEEE Sensors J. 15, pp. 337-345 (2015).

Milić D., Prijić A., Vračar Lj. and Prijić Z.: Characterization of commercial

thermoelectric modules for application in energy harvesting wireless sensor

nodes, Applied Thermal Engineering 121, pp. 74-82 (July 2017).

Prijić A., Marjanović M., Vračar Lj., Danković D. and Prijić Z.: A Steady-State SPICE Modeling of the Thermoelectric Wireless Sensor Network Node, in Proc. IcETRAN 2017 (Kladovo, Serbia, 2017), MOI2.3.1-MOI2.3.6.

Prijić Z., Vračar Lj. and Prijić A.: Design and Characterization of Thermoelectric Energy Harvesting Systems for Wireless Sensor Network Nodes, in Proc. IcETRAN 2018 (Palić, Serbia, June 2018), MOI1.1.1-MOI1.1.7.

Salerno D.: Ultralow Voltage Energy Harvester Uses Thermoelectric Generator for Battery-Free Wireless biosensors, Journal of Analog Innovation 20, 1-11 (2010).

Dalola S. et al.: Characterization of Thermoelectric Modules for Powering Autonomous Sensors, IEEE Transactions on Instrumentation and Measurement 58, pp. 99-107 (Jan. 2009).

Palacios R., Arenas A., Pecharroman R. and Pagola F.: Analytical procedure

to obtain internal parameters from performance curves of commercial thermoelectric modules, Appl. Thermal Eng 29, 3501-3505 (2009).

Dziurdzia P.: in Sustainable Energy Harvesting Technologies - Past, Present

and Future (InTech, Dec. 2011).

Carmo J. et al.: Characterization of thermoelectric generators by measuring the load-dependence behavior., Measurement 44, pp. 2194-2199 (Dec. 2011).

Siouane S., Jovanović S. and Poure P.: Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions, Energies 10, 386 (Mar. 2017).

Kreith F., Manglik R. and Bohn M.: Principles of Heat Transfer, 7th ed. (Cengage Learning, 2011).

Incropera F., DeWitt D., Bergman T. and Lavine A.: Fundamentals of heat

and mass transfer, 6th ed. (Wiley, 2007).

ANSYS Inc. ANSYS CFX, 2018. https://www.ansys.com/products/fluids/ansys-cfx.

Welty J., Wicks C., Wilson R. and Rorrer G.: Fundamentals of Momentum,

Heat, and Mass Transfer, 5th ed. (Wiley, 2008).

ANSYS Inc. Multiphysics simulation, 2018. https://www.ansys.

com/products/platform/multiphysics-simulation.

Li W. et al.: Multiphysics Simulations of a Thermoelectric Generator, Energy

Procedia 75, pp. 633-638 (2015).

Bjork R., Christensen D., Eriksen D. and Pryds N.: Analysis of the internal

heat losses in a thermoelectric generator, International Journal of Thermal

Sciences 85, pp. 12-20 (Nov. 2014).

LTC3108 ultralow voltage step-up converter and power manager, Datasheet, Linear Technology Corporation, 2010. http://www.linear.com.

ATS-50350B-C1-R0 BGA Heat Sink, Datasheet, Advanced Thermal Solutions Inc., 2013. https://www.qats.com.




DOI: https://doi.org/10.22190/FUWLEP1802089M

Refbacks

  • There are currently no refbacks.


ISSN   0354-804X (Print)

ISSN   2406-0534 (Online)