SPARSE LOCALIZATION OF BREAST TUMORS USING QUASI TE POLARIZED ANTENNAS

Marija Nikolić Stevanović, Jelena Dinkić, Antonije Đorđević, Jasmin Musić, Lorenzo Crocco

DOI Number
10.2298/FUEE1702187N
First page
187
Last page
197

Abstract


We develop a three-dimensional (3D) sparse algorithm for localization of breast tumors, using an antenna array and signal processing. Assuming that the prior-knowledge of the breast tissue distribution is available, we develop a model in which the trans-polarization is fully taken into account. By considering various array configurations, we also investigate the robustness of the algorithm to the inaccuracies in the assumed electromagnetic parameters of the breast.

Keywords

breast imaging, compressive sensing, inverse scattering, microwave imaging

Full Text:

PDF

References


S. Semenov, "Microwave tomography: Review of the progress towards clinical applications", Phil. Trans. R. Soc. A, vol. 367, pp. 3021–3042, 2009.

A. M. Hassan, M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection", IEEE Rev. Biomed. Eng., vol. 4, pp. 103–118, 2011.

P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography", Acad. Radiol., vol. 14, no. 2, pp. 207–218, February 2007.

S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. Tosteson, M. Grove, S. Soho, and W.Wells, "Electromagnetic breast imaging-pilot results in women with abnormal mammography", Radiology, vol. 243, pp. 350–359, 2007.

M. Klemm, J. Leendertz, A. W. Preece, M. Shere, I. J. Craddock, and R. Benjamin, "Clinical experience of breast cancer imaging using ultrawideband microwave radar system at Bristol", In Proceedings of the IEEE AP-S Int. Symp., Toronto, ON, Canada, 2010, vol. 501.10.

P. M. Meaney, D. Goodwin, A. H. Golnabi, T. Zhou, M. Pallone, S. D. Geimer, G. Bruke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects", IEEE Trans. Biomed. Eng., vol. 59, no. 12, pp. 3304–3313, December 2012.

I. S. Karanasiou, N. K. Uzunoglu, and C. C. Papageorgiou, "Towards functional noninvasive imaging of excitable tissues inside the human body using focused microwave radiometry", IEEE Trans. Microw. Theory Techn., vol. 52, no. 8, pp. 1898–1908, August 2004.

A. Fhager and M. Persson, "A microwave measurement system for stroke detection", In Proceedings of the Antennas and Propagation Conference (LAPC), Loughborough, UK, 2011. pp. 14–15.

R. Scapaticci, L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring", Progress In Electromagnetics Research B, vol. 40, pp. 305–324, 2012.

C. Gilmore, A. Abubakar, W. Hu, T.M. Habashy, and P. M. van den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method", IEEE Trans. Antennas Propag., vol. 57, no. 5, pp. 1528–1538, May 2009.

T. U. r , . A lan rek, A. apar, . a int rk, I. Ak man, A nonlinear mi ro ave rea t cancer imaging approach through realistic body–breast modeling", IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2596–2605, May 2014.

R. Scapaticci, I. Catapano, and L. Crocco, "Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues", IEEE Trans. Antennas Propag., vol. 60, no. 8, pp. 3717–3726, August 2012.

J. D. Shea, P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique", Med. Phys., vol. 37, no. 8, pp. 4210–4226, August 2010.

F. Gao, B. Van Veen, and S. C. Hagness, "Contrast enhanced microwave imaging of breast tumors using sparsity regularization", In Proceedings of the IEEE Antennas Propag. Soc. Int. Symp. (APS-URSI), Chicago, IL, 2012, pp. 8–14.

D. Winters, B. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem", IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 145–154, January 2012.

M. Nikolic Stevanovic, L. Crocco, A. Djordjevic, and A. Nehorai, "Higher order sparse microwave imaging of PEC scatterers", IEEE Trans. Antennas Propag., vol. 64, no. 3, March 2016.

M. Azghani, P. Kosmas, F. Marvasti, "Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding", IEEE Trans. Med. Imag., vol. 34, no. 2, pp. 357–365, February 2015.

M. Bevacqua, R. Scapaticci, "A compressive sensing approach for 3D breast cancer microwave imaging with magnetic nanoparticles as contrast agent", IEEE Trans. Med. Imag., vol. 35, no. 2, pp. 665–673, February 2016.

M. Nikolic, J. Dinkic, N. Milosevic, and B. Kolundzija, "Sparse localization of tumors inside an inhomogeneous breast", In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, IT, 2015, pp. 1056–1059.

D. M. Malioutov, M. Cetin, and A. S. Willsky, "Sparse signal reconstruction perspective for source localization with sensor arrays", IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3010–3022, 2005.

L. C. Potter, E. Ertin, J.T. Parker, M. Cetin, "Sparsity and compressed sensing in radar imaging", In Proceedings of the IEEE, vol. 98, no. 6, pp. 1006–1020, June 2010.

E. Porter, . Wall , . Z o , M. Popović, an J. D. Schwartz, "A flexible broadband antenna and transmission line network for a wearable microwave breast cancer detection system", Prog. Electromagn. Res. Lett., vol. 49, pp. 111–118, 2014.

E. Porter, M. Coate an M. Popović, An earl lini al t of time-domain microwave radar for breast health monitoring", IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 530–539, March 2016.

R. Scapaticci, O. M. Bucci, I. Catapano, and L. Crocco, "Differential Microwave Imaging for Brain Stroke Followup", Int. J. Antennas Propag., vol. 2014, Article ID 312528, 11 pages, 2014.

W.C. Chew, Waves and fields in inhomogenous media, Wiley-IEEE Press, February 1999.

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, http://stanford.edu/ ~boyd/cvx, June 2009.

M. Grant and S. Boyd, Graph implementations for non smooth convex programs, Recent advances in learning and control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, editors, Lecture Notes in Control and Information Sciences, Springer, 2008, pp. 95-110.

P. C. an en an D. P. O’Lear , "The use of the L-curve in the regularization of discrete ill-posed problems", SIAM J. Sci. Comput., vol. 14, no. 6, pp. 1487–1503, 1993.

E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, S. C. Hagness, Database of 3D grid-based numerical breast phantoms for use in computational electromagnetics simulations.

M. Lazebnik, L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries", Phys. Med. Biol., vol. 52, pp. 2637–2656, April 2007.

N. Milosevic, M. Nikolic, B. Kolundzija, J. Music, "Numerical heterogeneous breast phantoms with different resolutions", In Proceedings of the EUCAP, Lisbon, PT, 2015.

A. Djor jević, D. Olćan, M. Stojilović, M. Pavlović, . Kol n žija, D. Tošić, "Causal models of electrically large and lossy dielectric bodies", Facta Universitatis, Series: Electronics and Energetics, vol. 27, no. 2, pp. 221–234, June 2014.

http://www.wipl-d.com/


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626