LIFETIME ASPECTS OF WEARABLE ELECTRONICS

Hans de Vries

DOI Number
-
First page
543
Last page
560

Abstract


In the course of two European projects the endurance behavior of stretchable electronic substrates and of electronic textiles was investigated. The results have to a large extent been published already. In this work new analyses to the earlier results are presented. Straightforward analytical approaches are used to describe fatigue under cyclic mechanical loading in the two technologies. For stretchable substrates the actual plastic strain upon stretching could be qualitatively evaluated to replace the engineering strain. For the textile-based substrates the bending strain was estimated. Additionally, there are sub-categories within each technology which perform differently and apparently show percolation behavior.


Full Text:

PDF

References


T. Löher, M. Seckel, R. Vieroth, C. Dils, C. Kallmayer, A. Ostmann, R. Aschenbrenner, H. Reichl. Stretchable electronic systems: realization and applications. Proc. 11th EPTC, 2009, pp 893–898.

B. Schmied, J. Guenther, C. Klatt, H. Kober, E. Raemaekers. STELLA – stretchable electronics for large area applications. Adv. Sci. Technol. 2008, vol. 60, pp 67–73.

F. Bossuyt, T. Vervust, F. Axisa, J. Vanfleteren. Improved stretchable electronics technology for large area applications. Proc. MRS spring meeting symposium, 2010, pp 1271–1277.

K.H. Cherenack, L. van Pieterson. Smart textiles: challenges and opportunities. J. Appl. Phys. 2012, vol. 112, no 9, 091301.

F. Bossuyt, J. Guenther, T. Löher, M. Seckel, T. Sterken, H. de Vries. Cyclic endurance reliability of stretchable electronic substrates. Microelectronics Reliability, 2011, vol. 51, pp 628–635.

M. Jablonski, R. Lucchini, F. Bossuyt, T. Vervust, J. Vanfleteren, H. de Vries, P. Vean, M. Gonzalez. Impact of geometry on stretchable meandered interconnect uniaxial tensile extension fatigue reliability. Microelectronics Reliability, 2014, accepted for publication.

H. de Vries, K.H. Cherenack. Endurance behavior of conductive yarns. Microelectronics Reliability, 2014, vol. 54, pp 327–330.

M. de Kok, H. de Vries, K. Pacheco, G. Van Heck. Reliability of conducting yarns in electronic-textile applications. Textile Research Journal, 2014, submitted.

M. Gonzalez, F. Axisa, M. Vande Broucke, D. Brosteaux, B. Vandevelde, J. Vanfleteren. Design of metal interconnects for stretchable electronic circuits. Microelectronics Reliability, 2008, vol. 48, pp 825–832. M. Gonzalez, F.Axisa, F. Bossuyt, Y.Y. Hsu, B. Vandevelde, J. Vanfleteren. Design and performance of metal conductors for stretchable electronic circuits. Proc. 2nd ESTC, 2008, pp 371–377.

D.H. Kim, J.A. Rogers. Stretchable electronics: materials strategies and devices. Adv. Mater. 2008, vol. 20, pp 4887–4892.

F. Bossuyt, T. Vervust, J. Vanfleteren. Stretchable electronics technology for large area applications: fabrication and mechanical characterization. IEEE Trans. Comp. Pack. Manuf. Technol. 2013, vol. 3, no. 2, pp 229–235.

M. Jablonski, F. Bossuyt, J. Vanfleteren, T. Vervust, H. de Vries. Reliability of a stretchable interconnect utilizing terminated, in-plane meandered coper conductor. Microelectronics Reliability, 2013, vol. 53, pp 956–963.

M. Jablonski, R. Lucchini, F. Bossuyt, T. Vervust, J. Vanfleteren, H. de Vries, P. Vena, M. Gonzalez. Impact of geometry on stretchable meandered interconnect uniaxial tensile extension fatigue reliability. Microelectronics Reliability, 2014, submitted.

Y.Y. Hsu, B. Dimcic, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I. De Wolf. Reliability assessment of stretchable interconnects. Proc. IEEE IMPACT, 2010, pp 1–4; Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Dev. 2011, vol. 58, no. 8, pp 2680–2688.

H. de Vries, K.H. Cherenack. Failure modes in textile interconnect lines. IEEE Electron Dev. Lett. 2012, vol. 33, no. 10. Pp 1450–1452.

S.S. Manson. Behavior of materials under conditions of thermal stress. NACA TN 2933, 1953. L.F. Coffin Jr. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 1954, vol. 76, pp 931¬950.

O.H. Basquin. The exponential law of endurance tests. Proc. ASTM 1910, vol. 10, pp 625–630.

J.D. Morrow. Cyclic plastic strain energy and fatigue of metals. ASTM STP 1965, vol. 378, pp 45–87.

S.S. Manson. Thermal stress and low-cycle fatigue. New York: McGraw-Hill, 1966.

A. Fatemi, L. Yang. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue 1998, vol. 20, nr. 1, pp 9–34.

D. Farley, Y. Zhou, F. Askari, M. Al-Bassyiouni, A. Dasgupta, J.F.J. Caers, H. de Vries. Copper trace fatigue models for mechanical cycling, vibration and shock/drop of high-density PWAs. Microelectronics Reliability 2010, vol. 50, pp 937–947 .

D. Stauffer. Introduction to percolation theory. Taylor & Francis,1985.

J.P. Clerc, G. Giraud, J.M. Laugier, J.M. Luck. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Adv. Phys. 1990, vol. 39, nr. 3, pp 191–309.

M. Cattani, M.C. Salvadori, F.S. Teixeira. Insulator-conductor transition: a brief theoretical review. 2009, arXiv:0903.3587.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626