SOME PROPERTIES OF THE SET OF ALL STRONG UNIFORM CLUSTER POINTS

Serpil Pehlivan

DOI Number
https://doi.org/10.22190/FUMI211017041P
First page
595
Last page
603

Abstract


The aim of this paper is to establish some relationship between the set of strong uniform statistical cluster points and the set of strong statistical cluster points of a given sequence in the probabilistic normed space. To this aim, let the uniform density be on the positive integers N for a sequence in the probabilistic normed space, that is, cases as equal of the lower and upper uniform density of a subset of N. We introduce the concept of strong uniform statistical cluster points and give a new type convergence in the probabilistic normed space. Note that the set of strong uniform statistical cluster points is a non-empty compact set. We also investigate some properties of the set all strong uniform cluster points of a sequence in the probabilistic normed space.


Keywords

lower and upper uniform density, strong uniform statistical convergence, strong uniform statistical cluster point, set of statistical cluster points, probabilistic normed space, $\mathcal{D} - $ bounded, statistically $\mathcal{D} - $ bounded sequence.

Full Text:

PDF

References


C. Alsina, B. Schweizer and A. Sklar: On the definition of a probabilistic normed space. Aequationes Math. 46 (1993), 91–98.

C. Alsina, B. Schweizer and A. Sklar: Continuity properties of probabilistic norms. J. Math. Anal. Appl. 208 (1997),446–452.

T. C. Brown and A. R. Freedman: The uniform density of sets of integers and Fermat’s last theorem. C. R. Math. Rep. Acad. Sci. Canada 11 (1990), 1–6.

J. A. Fridy: Statistical limit points Proc. Amer. Math. Soc. 118 (1993), 1187–1192.

G. Grekos, T. Vladimır and J. Tomanova: A note on uniform or Banach density. Ann. Math. Blaise Pascal 17 (2010), no.1 153–163.

B. Lafuerza-Guillen, J. A. Rodrıguez Lallena and C. Sempi: A study of boundedness in probabilistic normed spaces. J. Math. Anal. Appl. 232 (1999), 183–196.

B. Lafuerza-Guillen and C. Sempi: Probabilistic norms and convergence of random variables. J. Math. Anal. Appl. 280 (2003), 9–16.

B. Lafuerza-Guillen, C. Sempi and G. Zhang: A study of boundedness in probabilistic normed spaces. Nonlinear Anal. 73 (2010), 1127–1135.

B. Lafuerza-Guillen and P. Harikrishnan: Probabilistic Normed Spaces. Imperial College Press, London, 2014.

P. Levy, : Distance de deux variables al´eatoires et distance de deux lois de probabilite. Traite de calcul des probabilites et de ses applications, tome I., (1937) 286–292.

K. Menger: Statistical metrics. Proc. Natl. Acad. Sci. USA 28 (1942), 535–537.

F. Ozturk, C. Sencimen and S. Pehlivan : Strong Γ- ideal convergence in a probabilistic normed space. Topology Appl. 201 (2016), 171–180.

S. Pehlivan and M. A. Mamedov: Statistical cluster points and turnpike. Optimization 48 (2000), 93–106.

B. Schweizer and A. Sklar: Probabilistic Metric Spaces Elsevier/North-Holland, New York, 1983 (Reissued with an errata list, notes and supplemental bibliography by Dover Publications, New York, 2005).

C. Sempi: A short and partial history of probabilistic normed spaces. Mediterr. J. Math. 3 (2006), 283–300.

A. N. Serstnev: Best-approximation problems in random normed spaces. Dokl. Akad. Nauk SSSR 149 (1963), 539–542.

D. A. Sibley: A metric for weak convergence of distribution functions, Rocky Mountain J. Math. 1 (1971), pp. 427–430.

C. Sencimen and S. Pehlivan: Statistically D− bounded sequences in probabilistic normed spaces. Appl. Anal. 88 (2009), 1133–1142.

C. Sencimen and S. Pehlivan: On exhaustive families of random functions and certain types of convergence. Stochastics 88 (2016), 285–299.

A. J. Zaslavski: Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, 2006.




DOI: https://doi.org/10.22190/FUMI211017041P

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)