Multigenerator Gabor Frames on Local Fields

Owais Ahmad, Neyaz Ahmad Sheikh

DOI Number
First page
Last page


The main objective of this paper is to provide complete characterization of multigenerator Gabor frames on a periodic set $\Omega$ in $K$. In particular, we provide some necessary and sufficient conditions for the multigenerator Gabor system to be a frame for $L^2(\Omega)$. Furthermore, we establish the complete characterizations of multigenerator Parseval Gabor frames.


Multigenerator Gabor frames, periodic set, signal processing.


Gabor Frame; Local Field;Fourier transform

Full Text:



O. Christensen, An Introduction to Frames and Riesz Bases,

Birkhauser, Boston, 2015.

D. Gabor, Theory of communications, J. Inst. Elect. Engn., 93, 429-457, 1946.

R. J. Duffin, A. C. Shaeffer, A class of nonharmonic Fourier series,

Trans. Amer. Math. Soc. 72 (1952) 341-366.

I. Daubechies, A. Grossmann, Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27(5) (1986) 1271-1283.

K. Grochenig, Foundation of Time-Frequency Analysis,

Birkhauser, Boston, 2001.

K. Grochenig, A.J. Janssen, N. Kaiblinger and GE. Pfander, Note on $B$-splines, wavelet scaling functions, and Gabor frames, IEEE Trans. Informat. Theory, 49(12), 3318-3320, 2003.

D. Li and H.K. Jiang Basic results of Gabor frame on local fields,

Chinese Ann. Math. Series B, 28(2), 165-176, 2007.

A. Ron and Z. Shen,

Weyl-Heisenberg frames and Riesz bases in L^2(mathbb R^d ),

Duke Math. J, 89, 237- 282, 1997.

F.A. Shah,A characterization of tight Gabor frame on local fields of positive characteristion,

Preprint, 2017.

F.A. Shah, Gabor frames on a half-line,

J. Contemp. Math. Anal., 47(5), 251-260, 2012.

M.H. Taibleson, Fourier Analysis on Local Fields,

Princeton University Press, Princeton, NJ, 1975.

M. Zibulski and Y. Y. Zeevi, Discrete multiwindow Gabor-type transforms, IEEE Trans. on Signal Proc., 45 (6), 1428-1442, 1997.

M. Zibulski and Y. Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. and Comput. Harmon. Anal., 4 (2), 188-221, 1997.

A. Akan and L. F. Chaparro, Multi-window Gabor expansion for evolutionary spectral analysis, IEEE Trans. on Sig. Proc., 63 (3), 249-262, 1997.

S. Li, Discrete multi-Gabor expansions, IEEE Trans. on Informat. Theory, 45 (6) 1954-1967, 1999.

S. Li, Proportional nonuniform multi-Gabor expansions,

EURASIP J. on Appl, Sig. Proc., 17, 2723-2731, 2004.

N. K. Subbanna and Y. Y. Zeevi,Existence conditions for discrete noncanonical multiwindow Gabor schemes, IEEE Trans. on Signal Proc., 55 (1)0, 5113-5117, 2007.

Y. Z. Li and Q. F. Lian, Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets,

Sc. China, 54 (5), 987-1010, 2011.

J. P. Gabardo and Y. Z. Li, Density results for Gabor systems associated with periodic subsets of the real line,Jour. of Approx. Th., 157 (2), 172-192, 2009.

Q. F. Lian and Y. Z. Li, Gabor frame sets for subspaces,

Adv. in Comput. Math., 34 (4), 391-411, 2011.

A. Ron and Z. W. Shen, Frames and stable bases for shift-invariant subspaces of L^2(R^d), Canad. Jour. of Math., 47 (5), 1051-1094, 1995.



© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)