Multigenerator Gabor Frames on Local Fields
Abstract
Keywords
Keywords
Full Text:
PDFReferences
O. Christensen, An Introduction to Frames and Riesz Bases,
Birkhauser, Boston, 2015.
D. Gabor, Theory of communications, J. Inst. Elect. Engn., 93, 429-457, 1946.
R. J. Duffin, A. C. Shaeffer, A class of nonharmonic Fourier series,
Trans. Amer. Math. Soc. 72 (1952) 341-366.
I. Daubechies, A. Grossmann, Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27(5) (1986) 1271-1283.
K. Grochenig, Foundation of Time-Frequency Analysis,
Birkhauser, Boston, 2001.
K. Grochenig, A.J. Janssen, N. Kaiblinger and GE. Pfander, Note on $B$-splines, wavelet scaling functions, and Gabor frames, IEEE Trans. Informat. Theory, 49(12), 3318-3320, 2003.
D. Li and H.K. Jiang Basic results of Gabor frame on local fields,
Chinese Ann. Math. Series B, 28(2), 165-176, 2007.
A. Ron and Z. Shen,
Weyl-Heisenberg frames and Riesz bases in L^2(mathbb R^d ),
Duke Math. J, 89, 237- 282, 1997.
F.A. Shah,A characterization of tight Gabor frame on local fields of positive characteristion,
Preprint, 2017.
F.A. Shah, Gabor frames on a half-line,
J. Contemp. Math. Anal., 47(5), 251-260, 2012.
M.H. Taibleson, Fourier Analysis on Local Fields,
Princeton University Press, Princeton, NJ, 1975.
M. Zibulski and Y. Y. Zeevi, Discrete multiwindow Gabor-type transforms, IEEE Trans. on Signal Proc., 45 (6), 1428-1442, 1997.
M. Zibulski and Y. Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. and Comput. Harmon. Anal., 4 (2), 188-221, 1997.
A. Akan and L. F. Chaparro, Multi-window Gabor expansion for evolutionary spectral analysis, IEEE Trans. on Sig. Proc., 63 (3), 249-262, 1997.
S. Li, Discrete multi-Gabor expansions, IEEE Trans. on Informat. Theory, 45 (6) 1954-1967, 1999.
S. Li, Proportional nonuniform multi-Gabor expansions,
EURASIP J. on Appl, Sig. Proc., 17, 2723-2731, 2004.
N. K. Subbanna and Y. Y. Zeevi,Existence conditions for discrete noncanonical multiwindow Gabor schemes, IEEE Trans. on Signal Proc., 55 (1)0, 5113-5117, 2007.
Y. Z. Li and Q. F. Lian, Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets,
Sc. China, 54 (5), 987-1010, 2011.
J. P. Gabardo and Y. Z. Li, Density results for Gabor systems associated with periodic subsets of the real line,Jour. of Approx. Th., 157 (2), 172-192, 2009.
Q. F. Lian and Y. Z. Li, Gabor frame sets for subspaces,
Adv. in Comput. Math., 34 (4), 391-411, 2011.
A. Ron and Z. W. Shen, Frames and stable bases for shift-invariant subspaces of L^2(R^d), Canad. Jour. of Math., 47 (5), 1051-1094, 1995.
DOI: https://doi.org/10.22190/FUMI1802307A
Refbacks
ISSN 0352-9665 (Print)