Mohd Arif Raza

DOI Number
First page
Last page


In this manuscript, we study the $m$-th commutator and anti-commutator involving generalized derivations on some suitable subsets of rings. We attain the information about the structure of rings and the behaviour of generalized derivation in form of multiplication by some specific element of Utumi quotient ring which satisfies certain differential identities.


prime ring; Generalized derivation, Generalized polynomial identity.

Full Text:



bibitem{AI} {N. Argac{c} and H. G. Inceboz,} {it Derivation of prime and semiprime rings}, J. Korean Math. Soc., 46 (5) (2009), 997-1005.

bibitem{AR} {M. Ashraf and N. Rehman,} {it On commutativity of rings with derivations}, Results Math., 42 (1-2) (2002), 3-8.

bibitem{BM} {K. I. Beidar, W. S. Martindale III and A. V. Mikhalev,} Rings with Generalized Identities,{it Pure and Applied Mathematics, Marcel Dekker 196, New York}, 1996.

bibitem{BB} {K. I. Beidar and M. Bre$breve{s}$ar,} { Extended Jacobson density theorem for rings with automorphisms and derivations}, Israel J. Math., 122 (2001), 317-346.

bibitem{H1} {H. E. Bell and M. N. Daif,} {it On commutativity and strong commutativity-preserving maps}, Cand. Math. Bull., 37 (1994), 443-447.

bibitem{C} {C. L. Chuang,} {it GPIs having coefficients in Utumi quotient rings}, Proc. Amer. Math. Soc. 103 (1988), 723-728.

bibitem{D6} {M. N. Daif and H. E. Bell,} {it Remarks on derivations on semiprime rings}, Internt. J. Math. Math. Sci., 15 (1992), 205-206.

bibitem{DA} {Q. Deng and M. Ashraf,} {it On strong commutativity preserving mappings}, Results Math., 30 (1996), 259-263.

bibitem{EM} {T. S. Erickson, W. S. Martindale III and J. M. Osborn,} {it Prime nonassociative algebras}, Pacific. J. Math., 60 (1975), 49-63.

bibitem{H6} {I. N. Herstein,} {it A note on derivations}, Canad. Math. Bull., 21 (1978), 241-242.

bibitem{HU} {S. Huang,}{it Derivation with Engel conditions in prime and semiprime rings}, Czechoslovak Math. J., 61 (136)(2011), 1135-1140.

bibitem{HU1} {S. Huang,} {it Generalized derivations of prime and semiprime rings}, Taiwanese J. Math., 16 (2) (2012), 771-776.

bibitem{J} {N. Jacobson,} Structure of Rings, {it Colloquium Publications 37, Amer. Math. Soc. VII, Provindence, RI}, 1956.

bibitem{K} {V. K. Kharchenko,} {it Differential identities of prime rings}, Algebra Logic, 17 (1979), 155-168.

bibitem{L} {C. Lanski,} {it An Engel condition with derivation}, Proc. Amer. Math. Soc., 118 (1993), 731-734.

bibitem{TKL} {T. K. Lee,} {it Generalized derivations of left faithful rings}, Comm. Algebra, 27 (8)(1998), 4057-4073.

bibitem{MR} {W. S. Martindale III,} {it Prime rings satisfying a generalized polynomial identity}, J. Algebra, 12 (1969), 576-584.

bibitem{M} {J. H. Mayne,} {it Centralizing mappings of prime rings}, Canad. Math. Bull., 27 (1) (1984), 122-126.

bibitem{RR} {M. A. Raza and N. Rehman,} {it On prime and semiprime rings with generalized Derivations and non-commutative Banach algebras}, Proc. Indian Acad. Sci. (Math. Sci.) 126 (3) (2016), 389-398.

bibitem{RRB} {N. Rehman, M. A. Raza and T. Bano,} {it On commutativity of rings with generalized derivations}, J. Egyptian Math. Soc. 24 (2) (2016), 151-155.

DOI: https://doi.org/10.22190/FUMI1903391R


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)