ON mTH-COMMUTATORS AND ANTI-COMMUTATORS INVOLVING GENERALIZED DERIVATIONS IN PRIME RINGS
Abstract
Keywords
Full Text:
PDFReferences
bibitem{AI} {N. Argac{c} and H. G. Inceboz,} {it Derivation of prime and semiprime rings}, J. Korean Math. Soc., 46 (5) (2009), 997-1005.
bibitem{AR} {M. Ashraf and N. Rehman,} {it On commutativity of rings with derivations}, Results Math., 42 (1-2) (2002), 3-8.
bibitem{BM} {K. I. Beidar, W. S. Martindale III and A. V. Mikhalev,} Rings with Generalized Identities,{it Pure and Applied Mathematics, Marcel Dekker 196, New York}, 1996.
bibitem{BB} {K. I. Beidar and M. Bre$breve{s}$ar,} { Extended Jacobson density theorem for rings with automorphisms and derivations}, Israel J. Math., 122 (2001), 317-346.
bibitem{H1} {H. E. Bell and M. N. Daif,} {it On commutativity and strong commutativity-preserving maps}, Cand. Math. Bull., 37 (1994), 443-447.
bibitem{C} {C. L. Chuang,} {it GPIs having coefficients in Utumi quotient rings}, Proc. Amer. Math. Soc. 103 (1988), 723-728.
bibitem{D6} {M. N. Daif and H. E. Bell,} {it Remarks on derivations on semiprime rings}, Internt. J. Math. Math. Sci., 15 (1992), 205-206.
bibitem{DA} {Q. Deng and M. Ashraf,} {it On strong commutativity preserving mappings}, Results Math., 30 (1996), 259-263.
bibitem{EM} {T. S. Erickson, W. S. Martindale III and J. M. Osborn,} {it Prime nonassociative algebras}, Pacific. J. Math., 60 (1975), 49-63.
bibitem{H6} {I. N. Herstein,} {it A note on derivations}, Canad. Math. Bull., 21 (1978), 241-242.
bibitem{HU} {S. Huang,}{it Derivation with Engel conditions in prime and semiprime rings}, Czechoslovak Math. J., 61 (136)(2011), 1135-1140.
bibitem{HU1} {S. Huang,} {it Generalized derivations of prime and semiprime rings}, Taiwanese J. Math., 16 (2) (2012), 771-776.
bibitem{J} {N. Jacobson,} Structure of Rings, {it Colloquium Publications 37, Amer. Math. Soc. VII, Provindence, RI}, 1956.
bibitem{K} {V. K. Kharchenko,} {it Differential identities of prime rings}, Algebra Logic, 17 (1979), 155-168.
bibitem{L} {C. Lanski,} {it An Engel condition with derivation}, Proc. Amer. Math. Soc., 118 (1993), 731-734.
bibitem{TKL} {T. K. Lee,} {it Generalized derivations of left faithful rings}, Comm. Algebra, 27 (8)(1998), 4057-4073.
bibitem{MR} {W. S. Martindale III,} {it Prime rings satisfying a generalized polynomial identity}, J. Algebra, 12 (1969), 576-584.
bibitem{M} {J. H. Mayne,} {it Centralizing mappings of prime rings}, Canad. Math. Bull., 27 (1) (1984), 122-126.
bibitem{RR} {M. A. Raza and N. Rehman,} {it On prime and semiprime rings with generalized Derivations and non-commutative Banach algebras}, Proc. Indian Acad. Sci. (Math. Sci.) 126 (3) (2016), 389-398.
bibitem{RRB} {N. Rehman, M. A. Raza and T. Bano,} {it On commutativity of rings with generalized derivations}, J. Egyptian Math. Soc. 24 (2) (2016), 151-155.
DOI: https://doi.org/10.22190/FUMI1903391R
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)