Olgun Durmaz, Busra Aktas, Halit Gündoğan

DOI Number
First page
Last page


In this paper, we give how to define the basic concepts of differential geometry on Dual space. For this, dual tangent vectors that have p as dual point of application are defined. Then, the dual analytic functions defined by Dimentberg are examined in detail, and by using the derivative of the these functions, dual directional derivatives and dual tangent maps are introduced.


Dual space; dual tangent vectors; dual analytic functions; tangent maps

Full Text:



A. Alastuey, M. Clusel, M. Magro, and P. Pujol, Physics and Mathematical Tools, World Scientific Co. Pte. Ltd., Singapore, 2016.

V. Brodsky, and M. Shoham, Dual Numbers Representations of Rigid Body Dynamics, Mechanism and Machine Theory, 34(1999), 693-718.

W. K. Clifford, Preliminary Sketch of bi-quaternions, Proc. London Mathematical Society, 4(1873), 361-395.

F. M. Dimentberg, The Screw Calculus and its Applications in Mechanisms, Izdat. "Nauka", Moskow, USSR, 1965.

J. R. Dooley and J. M. McCarthy, Spatial Rigid Body Dynamics Using Dual Quaternion Components, Proc. of IEEE International Conf. on Robotics and Automation, 1, 90-95, Sacremento, CA, 1991.

N. A. Gromov, Contractions and Analytical Continuations of Classical Groups, Komi Science Center, Syktyvkar, Russia, 1990.

N. A. Gromov, The matrix Quantum Unitary Cayley-Klein Groups, J. Phys. A: Math. Gen., 26(1993), L5-L8.

N. A. Gromov, I. V. Kostyakov and V. V. Kuratov, Quantum Orthogonal Cayley-Klein Groups and Algebras, P.Kasperkovitz and D. Grau, World Scientific, Singapore, (1998), 19--21.

A. P. Kotelnikov, Screw calculus and Some of Its Applications in Geometry and Mechanics, Annals of the Imperial University, Kazan, 1895.

J. M. McCarthy, An Introduction to Theoretical Kinematics, The MIT Press, London, 1990.

B. O'Neill, Elementary Differential Geometry, Elsevier, USA, 2006.

G. R. Pennoch and A. T. Yang Dynamics Analysis of Multi-Rigid-Body Open- Chain System, J. Mech., Trans., and Automation, 105(1983), 28-34.

E. Study, Geometrie der Dynamen, Druck und Verlag von B.G. Teubner, Leipzig, 1903.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)