### LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS IN ARROWHEAD FORM

**DOI Number**

**First page**

**Last page**

#### Abstract

This paper deals with different approaches for solving linear systems of the first order differential equations with the system matrix in the symmetric arrowhead form.

Some needed algebraic properties of the symmetric arrowhead matrix are proposed.

We investigate the form of invariant factors of the arrowhead matrix.

Also the entries of the adjugate matrix of the characteristic matrix of the arrowhead matrix are considered. Some reductions techniques for linear systems of differential equations with the system matrix in the arrowhead form are presented.

#### Keywords

#### Full Text:

PDF#### References

M. Bixon, J. Jortner: Intramolecular radiationless transitions. J. Chem. Phys. 48 (1968), pp. 715-726.

F. Diele, N. Mastronardi, M. Van Barel, E. Van Camp: On computing the spectral decomposition of symmetric arrowhead matrices. Computational Science and Its Applications - ICCSA 2004, 3044 (2004), pp. 932-941.

J.W. Gadzuk: Localized vibrational modes in Fermi liquids, general theory. Phys. Rev. B24 (1981), pp. 1651-1663.

G.A. Gravvanis: An approximate inverse matrix technique for arrowhead matrices. Int. J. Comput. Math. 70 (1998), pp. 35-45.

G.A. Gravvanis: Solving symmetric arrowhead and special tridiagonal linear systems by fast approximate inverse preconditioning. J. Math. Model. Algorithms Oper. Res. 1 (2002), pp. 269-282.

M. Gu, S.C. Eisenstat: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16 (1995), pp. 172-191.

W. Holubowski, D. Kurzyk, T. Trawinski: A Fast method for computing the inverse of symmetric block arrowhead matrices. Appl. Math. Inf. Sci. 9 (2015), pp. 319-324.

S. Van Huffel, H. Park: Efficient reduction algorithms for bordered band matrices. Numer. Linear Algebra Appl. 2 (1995), pp 95-113.

N. Jakovcevic Stor, I. Slapnicar, J.L. Barlow: Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications. Linear Algebra Appl. 464 (2015), pp. 62-89.

I. Jovovic: Formulae of reduction for some systems of operator equations. Proceedings of International Conference Mathematical and Informational Technologies, MIT-2011, 2011., pp. 161-165.

I. Jovovic: Total reduction of linear systems of operator equations with the system matrix in the companion form. Publ. Inst. Math. (Beograd) (N.S.) 93 (2013), pp. 117-126.

I. Jovovic: Partial reduction for linear systems of operator equations with system matrix in companion form. Novi Sad J. Math. 45 (2015), pp. 1-9.

I. Jovovic: Differential transcendence of solutions of systems of linear differential equations based on total reduction of the system. Appl. Anal. Discrete Math. 14 (2020), pp. 498-511.

H.T. Kung, B.W. Suter: A hub matrix theory and applications to wireless communications. EURASIP J. Adv. Signal Process. 2007 (2007), 013659.

Z. Liu, K. Wang, C. Xu: Extremal inverse eigenvalue problem for symmetric doubly arrow matrices. J. Appl. Math. Comput. 45 (2014), pp. 151-164.

B. Malesevic, D. Todoric, I. Jovovic, S. Telebakovic: Formulae of partial reduction for linear systems of first order operator equations. Appl. Math. Lett. 23 (2010), pp. 1367-1371.

B. Malesevic, D. Todoric, I. Jovovic, S. Telebakovic: Differential transcendency in the theory of linear differential systems with constant coefficients. ISRN Math. Anal. 2012 (2012), pp. 1-8.

E. Mizutani, J.W. Demmel: On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning. Neural Networks, 16 (2003), pp. 745-753.

D. Mogilevtsev, A. Maloshtan, S. Kilin, L.E. Oliveira, S.B. Cavalcanti:

Spontaneous emission and qubit transfer in spin-1/2 chains. J. Phys. B43 (2010), 095506.

E. Montano, M. Salas, R.L. Soto: Positive matrices with prescribed singular values. Proyecciones, 27 (2008), pp. 289-305.

D.P. O'Leary, G.W. Stewart: Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices. J. Comput. Phys. 90 (1990), pp 497-505.

S. Oliveira: A new parallel chasing algorithm for transforming arrowhead matrices to tridiagonal form. Math. Comp. 67 (1998), pp. 221-235.

B.N. Parlett, B. Nour-Omid: The use of refined error bound when updating eigenvalues of tridiagonals. Linear Algebra Appl. 68 (1985), pp. 179-219.

J. Peng, X.Y. Hu, L. Zhang: Two inverse eigenvalue problems for a special kind of matrices. Linear Algebra Appl. 416 (2006), pp. 336-347.

H. Pickmann, J. Egana, R.L. Soto: Extremal inverse eigenvalue problem for bordered diagonal matrices. Linear Algebra Appl. 427 (2007), pp. 256-271.

H. Saberi Najafi, S.A. Edalatpanah, G.A. Gravvanis: An efficient method for computing the inverse of arrowhead matrices. Appl. Math. Lett. 33 (2014), pp. 1-5.

L. Shen, B.W. Suter: Bounds for eigenvalues of arrowhead matrices and their applications to hub matrices and wireless communications. EURASIP J. Adv. Signal Process. 2009 (2009), 379402.

Y. Yuan: Generalized inverse eigenvalue problems for symmetric arrowhead matrices. Int. J. Math. Comput. Sci. 4 (2010), pp. 905-908.

H. Zha: A two-way chasing scheme for reducing a symmetric arrowhead matrix to tridiagonal form. J. Numer. Linear Algebra Appl. 1 (1992), pp. 49-57.

DOI: https://doi.org/10.22190/FUMI201115041J

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)