ONE-DIMENSIONAL BIOLOGICAL MODEL OF SYNOVIAL JOINTS REGENERATIVE REHABILITATION IN OSTEOARTHRITIS

Valentin L. Popov, Aleksandr Poliakov, Vladimir Pakhaliuk

DOI Number
https://doi.org/10.22190/FUME220203014P
First page
421
Last page
444

Abstract


This work is devoted to the study of a one-dimensional phenomenological model of a focal defect regenerative rehabilitation in the articular cartilage. The model is based on six differential equations in partial derivatives of the “Diffusion-Reaction” type, which was previously used by a number of authors to study cellular processes in various tissues under cell therapy conditions. To take into account the influence of moderate mechanical stimulation of immature tissue, an indirect approach was used, as a result of which some model parameters that directly affect cell proliferation and differentiation were varied considering experimental data. The results of  the model study  show that moderate stimulation of immature tissue in the early stages of repair the focal articular cartilage defect under conditions of cell therapy leads to an intensification of regenerative processes in the tissue and promotes more rapid formation of the extracellular matrix.

Keywords

Synovial joint, Articular cartilage, Osteoarthritis, Cell therapy, Tissue engineering, Regenerative rehabilitation

Full Text:

PDF

References


Poliakov, A., Pakhaliuk, V., Popov, V.L., 2020, Current trends in improving of artificial joints design and technologies for their arthroplasty, Frontiers in Mechanical Engineering, 6, 4.

Francis, S.L., Di Bella, C., Wallace, G.G., Choong, P.F.M., 2018, Cartilage tissue engineering using stem cells and bioprinting technology-barriers to clinical translation, Front Surg, 5, 70.

Fox, S.A., Bedi, A., Rodeo, S.A., 2009, The basic science of articular cartilage: structure, composition, and function, Sports Health, 1, pp. 461-468.

Dewan, A.K., Gibson, M.A., Elisseeff, J.H., Trice, M.E., 2014, Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques, Biomed Res Int, 2014(4), 272481.

Hong, E., Reddi, A.H., 2013, Dedifferentiation and redifferentiation of articular chondrocytes from surface and middle zones: changes in microRNAs-221/-222, -140, and -143/145 expression, Tissue Eng Part A, 19(7-8), pp. 1015-1022.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., Horwitz, E., 2006, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8(4), pp. 315-317.

Patel, D.M., Shah, J., Srivastava, A.S., 2013, Therapeutic potential of mesenchymal stem cells in regenerative medicine, Stem Cells Int, 2013, 2013, 496218.

Irion, V.H. Flanigan, D.C., 2013, New and emerging techniques in cartilage repair: other scaffold-based cartilage treatment options, Oper Tech Sports Med, 21, pp. 125-137.

Izadifar, Z., Chen, X., Kulyk, W., 2012, Strategic design and fabrication of engineered scaffolds for articular cartilage repair, J Funct Biomater, 3, pp. 799-838.

Montoya, F., Martínez, F., García-Robles, M., Balmaceda-Aguilera, C., Koch, X., Rodriguez, F., Silva-Alvarez, C., Salazar, K., Ulloa, V., Nualart, F., 2013, Clinical and experimental approaches to knee cartilage lesion repair and mesenchymal stem cell chondrocyte differentiation, Biol Res, 46(4), pp. 441-451.

Montaseri, A., Busch, F., Mobasheri, A., Buhrmann, C., Aldinger, C., Rad, J.S., Shakibaei, M., 2011, IGF-1 and PDGF-bb suppress IL-1b-induced cartilage degradation through down-regulation of NF-jB signaling: involvement of Src/PI-3k/AKT pathway, PLoS One, 6(12), e28663.

McNary, S., Athanasiou, K., Reddi, A.H., 2014, Transforming growth factor beta-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton, Tissue Eng Part A, 20(5-6), pp. 921-929.

Mariani, E., Pulsatelli, L., Facchini, A., 2014, Signaling pathways in cartilage repair, Int J Mol Sci, 15, pp. 8667-8698.

Murphy, M.K., Huey, D.J., Hu, J.C., Athanasiou, K.A., 2015, TGF-b1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells, Stem Cells, 33(3), pp. 762-773.

Liao, J., Hu, N., Zhou, N., Lin, L., Zhao, C., Yi, S., Fan, T., Bao, W., Liang, X., Chen, H., Xu, W., Chen, C., Cheng, Q., Zeng, Y., Si, W., Yang, Z., Huang, W., 2014, Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation, PLoS One, 9(2), e89025.

Li, X., Su, G., Wang, J., Zhou, Z., Li, L., Liu, L., Guan, M., Zhang, Q., Wang, H., 2013, Exogenous bFGF promotes articular cartilage repair via up-regulation of multiple growth factors, Osteoarthritis Cartilage, 21(10), pp. 1567-1575.

Lu, C.H., Yeh, T.S., Yeh, C.L., Fang, Y.D., Sung, L.Y., Lin, S.Y., Yen, T.C., Chang, Y.H., Hu, Y.C., 2014, Regenerating cartilages by engineered ASCs: Prolonged TGF-(beta)3/BMP-6 expression improved articular cartilage formation and restored zonal structure, Mol Ther, 22(1), pp. 186-195.

Reyes, R., Delgado, A., Solis, R., Sanchez, E., Hernandez, A., Roman, J.S., Evora, S., 2014, Cartilage repair by local delivery of transforming growth factor-β1 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic-co-glycolic bilayered scaffold, J Biomed Mater Res A, 102(4), pp. 1110-1120.

Popov, V.L., Poliakov, A.M., Pakhaliuk, V.I., 2021, Synovial joints. Tribology, regeneration, regenerative rehabilitation and arthroplasty, Lubricants, 9(2), 15.

Mow, V.C., Gu, W., Chen, F.H., 2005, Structure and Function of Articular Cartilage and Meniscus, In Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd ed., Mow, V.C., Huiskes, R., eds., Lippincott Williams and Wilkins: Philadelphia, PA, USA, pp. 181-258.

Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G., 1980, Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments, J Biomech Eng, 102(1), pp. 73-84.

Biot, M.A., 1941, General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, 12, pp. 155-164.

Biot, M.A., 1956, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, J of the Acoustical Soc. of America, 28, pp. 168-178.

Blewis, M.E., Nugent-Derfus, G.E., Schmidt, T.A., Schumacher, B.L., Sah, R.l., 2007, A model of synovial fluid lubricant composition in normal and injured joints, Eur Cell Mater, 6(13), pp. 26-39.

Rullmann, J.A., Struemper, H., Defranoux, N.A., Ramanujan, S., Meeuwisse, C.M.L., van Elsas, A., 2005, Systems biology for battling rheumatoid arthritis: application of the Entelos PhysioLab platform, Syst Biol (Stevenage), 152(4), pp. 256-262.

Willett, N.J., Boninger, M.L., Miller, L.J., 2020, Taking the next steps in regenerative rehabilitation: establishment of a new interdisciplinary field, Arch Phys Med Rehabil, 101(5), pp. 917-923.

Rando, T.A., Ambrosio, F., 2018, Regenerative rehabilitation: applied biophysics meets stem cell therapeutics, Cell Stem Cell, 22(3), pp. 306-309.

Cheuy, V., Picciolini, S., Bedoni, M., 2020, Progressing the field of regenerative rehabilitation through novel interdisciplinary interaction, NPJ Regen Med, 5, 16.

Li, K., Zhang, C., Qiu, L., Gao, L., Zhang, X., 2017, Advances in application of mechanical stimuli in bioreactors for cartilage tissue engineering, Tissue Eng Part B: Rev, 2017, 23, pp. 399-411.

Salinas, E.Y., Hu, J.C., Athanasiou, K., 2018, A guide for using mechanical stimulation to enhance tissue-engineered articular cartilage properties, Tissue Eng Part B: Rev, 24, pp. 345-358.

Saadat, E., Lan, H., Majumdar, S., Rempel, D.M., King, K.B., 2006, Long-term cyclical in vivo loading increases cartilage proteoglycan content in a spatially specific manner: an infrared microspectroscopic imaging and polarized light microscopy study, Arthritis Res Ther, 8(5), R147.

Hyttinen, M.M., Arokoski, J.P., Parkkinen, J.J., Lammi, M.J., Lapveteläinen, T., Mauranen, K., Király, K., Tammi, M.I., Helminen, H.J., 2001, Age matters: collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading, Osteoarthritis Cartilage, 9(8), pp. 694-701.

Neu, C.P., Khalafi, A., Komvopoulos, K., Schmid, T.M., Reddi, A.H., 2007, Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling, Arthritis Rheum, 56(11), pp. 3706-3714.

Jortikka, M.O., Inkinen, R.I., Tammi, M.I., Parkkinen, J., Haapala, J., Kiviranta, I., Helminen, H., Lammi, M., 1997, Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage, Ann Rheum Dis, 56(4), pp. 255-261.

Arokoski, J.P., Jurvelin, J.S., Väätäinen, U., Helminen, H.J., 2000, Normal and pathological adaptations of articular cartilage to joint loading, Scand J Med Sci Sports, 10(4), pp. 186-198.

Grodzinsky, A.J., Levenston, M.E., Jin, M., Frank, E.H., 2000, Cartilage tissue remodeling in response to mechanical forces, Annu Rev Biomed Eng, 2, pp. 691-713.

Li, Z., Yao, S.J., Alini, M., Stoddart, M.J., 2010, Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress, Tissue Eng, 16, pp. 575-584.

Fahy, N., Alini, M., Stoddart, M.J., 2018, Mechanical stimulation of mesenchymal stem cells: implications for cartilage tissue engineering, J Orthop Res, 36, pp. 52-63.

Kasper, G., Dankert, N., Tuischer, J., Hoeft, M., Gaber, T., Glaeser, J.D., Zander, D., Tschirschmann, M., Thompson, M., Matziolis, G., Duda, G.N., 2007, Mesenchymal stem cells regulate angiogenesis according to their mechanical environment, Stem Cells, 25, pp. 903-910.

Albro, M.B., Nims, R.J., Cigan, A.D., Yeroushalmi, K.J., Alliston, T., Hung, C.T., Ateshian, G.A., 2013, Accumulation of exogenous activated TGF-β in the superficial zone of articular cartilage, Biophys J, 2013, 104(8), pp. 1794-1804.

Madej, W., van Caam, A., Blaney Davidson, E.N., van der Kraan, P.M., Buma, P., 2014, Physiological and excessive mechanical compression of articular cartilage activates Smad2/3P signaling, Osteoarthritis Cartilage, 22(7), pp. 1018-1025.

Albro, M.B., Nims, R.J., Cigan, A.D., Yeroushalmi, K.J., Shim, J.J., Hung, C.T., Ateshian, G.A., 2013, Dynamic mechanical compression of devitalized articular cartilage does not activate latent TGF-β, J Biomech, 46(8), pp. 1433-1439.

Fitzgerald, J.B., Jin, M., Dean, D., Wood, D.J., Zheng, M.H., Grodzinsky, A.J., 2004, Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP, J Biol Chem, 279(19), pp. 19502-19511.

Liu, Y., Shah, K.M., Luo, J., 2021, Strategies for articular cartilage repair and regeneration, Front Bioeng Biotechnol, 9, 770655.

Vermolen, F.J., Javierre, E., 2009, A suite of continuum models for different aspects in wound healing, in: Gefen, A. (eds) Bioengineering Research of Chronic Wounds, SMTEB, 1, Springer, Berlin, Heidelberg, pp. 127-168.

Lutianov, M., Naire, S., Roberts, S., Kuiper, J.H., 2011, A mathematical model of cartilage regeneration after cell therapy, J Theor Biol, 289, pp. 136-150.

Campbell, K., Naire, S., Kuiper, J.H., 2019, A mathematical model of cartilage regeneration after chondrocyte and stem cell implantation - I: the effects of growth factors, J Tissue Eng, 10, 2041731419827791.

Campbell, K., Naire, S., Kuiper, J.H., 2019, A mathematical model of cartilage regeneration after chondrocyte and stem cell implantation - II: the effects of co-implantation, J Tissue Eng, 10, 2041731419827792.

Bailón-Plaza, A., van der Meulen, M.C., 2001, A mathematical framework to study the effects of growth factor influences on fracture healing, J Theor Biol, 212(2), pp. 191-209.

Obradovic, B., Meldon, J., Freed, L., Vunjak-Novakovic, G., 2000, Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model, Aiche Journal, 46, pp. 1860-1871.

Zhou, S., Cui, Z., Urban, J.P., 2004, Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study, Arthritis Rheum, 50(12), pp. 3915-3924.

Isaksson, H., Wilson, W., van Donkelaar, C.C., 2006, Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing, J Biomech, 39(8), pp. 1507-1516.

Prendergast, P.J., Huiskes, R., Søballe, K., 1997, Biophysical stimuli on cells during tissue differentiation at implant interfaces, J Biomech, 30(6), pp. 539-48.

Bailón-Plaza, A., van der Meulen, M.C., 2003, Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing, J Biomech, 36(8), pp. 1069-1077.

Lacroix, D., Prendergast, P.J., 2002, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading, J Biomech, 35(9), pp. 1163-1171.

Andreykiv, A., van Keulen, F., Prendergast, P.J., 2008, Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells, Biomech Model Mechanobiol, 7(6), pp. 443-61.

Huiskes, R., Van Driel, W.D., Prendergast, P.J., Søballe, K., 1997, A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation, J Mater Sci Mater Med, 8(12), pp. 785-788.

Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Beck, A., Claes, L., Ignatius, A., 2002, Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain, J Biomech, 35(7), pp. 873-880.

Kaspar, D., Seidl, W., Neidlinger-Wilke, C., 2000, Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity, J Biomech, 33(1), pp. 45-51.

Zhang, Z.J., Huckle, J., Francomano, C.A., Spencer, R.G., 2003, The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production, Ultrasound Med Biol, 29(11), pp. 1645-1651.

Wu, Q.Q., Chen, Q., 2000, Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals, Exp Cell Res, 256(2), pp. 383-391.

Rose, L.F., Wolf, E.J., Brindle, T., Cernich, A., Dean, W.K., Dearth, C.L., Grimm, M., Kusiak, A., Nitkin, R., Potter, K., Randolph, B.J., Wang, F., Yamaguchi, D., 2018, The convergence of regenerative medicine and rehabilitation: federal perspectives, NPJ Regen Med, 3, 19.

Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S., 2019, A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration, Bone, 127, pp. 544-555

Eremina, G., Smolin, A., Martyshina, I., 2022, Convergence analysis and validation of a discrete element model of the human lumbar spine, Reports in Mechanical Engineering, 3(1), pp. 62-70.

Stojkovic, M., Veselinovic, M., Vitkovic, N., Marinkovic, D., Trajanovic, M., Arsic, S., Mitkovic, M., 2018, Reverse modelling of human long bones using T-splines-case of tibia, Tehnicki Vjesnik, 25(6), pp. 1753-1760.




DOI: https://doi.org/10.22190/FUME220203014P

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4