AUTOMOTIVE APPLICATIONS OF EVOLVING TAKAGI-SUGENO-KANG FUZZY MODELS

Radu-Emil Precup, Stefan Preitl, Claudia-Adina Bojan-Dragos, Mircea-Bogdan Radac, Alexandra-Iulia Szedlak-Stinean, Elena-Lorena Hedrea, Raul-Cristian Roman

DOI Number
10.22190/FUME170505011P
First page
231
Last page
244

Abstract


This paper presents theoretical and application results concerning the development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, which will be viewed as controlled processes, in the field of automotive applications. The two dynamic systems models are nonlinear dynamics of the longitudinal slip in the Anti-lock Braking Systems (ABS) and the vehicle speed in vehicles with the Continuously Variable Transmission (CVT) systems. The evolving Takagi-Sugeno-Kang fuzzy models are obtained as discrete-time fuzzy models by incremental online identification algorithms. The fuzzy models are validated against experimental results in the case of the ABS and the first principles simulation results in the case of the vehicle with the CVT.

Keywords

Automotive Applications, Anti-lock Braking Systems, Continuously Variable Transmission Systems, Dynamics, Evolving Takagi-Sugeno-Kang Fuzzy Models

Full Text:

PDF

References


Sayed Mouchaweh, M., Devillez, A., Villermain Lecolier, G., Billaudel, P., 2002, Incremental learning in fuzzy pattern matching, Fuzzy Sets and Systems, 132(1), pp. 49-62.

Liu, P.X., Meng, M.Q.-H., 2004, Online data-driven fuzzy clustering with applications to real-time robotic tracking, IEEE Transactions on Fuzzy Systems, 12(3), pp. 516-523.

Wang, W., Vrbanek, Jr., J., 2008, An evolving fuzzy predictor for industrial applications, IEEE Transactions on Fuzzy Systems, 16(6), pp. 1439-1449.

Lughofer, E., 2011, Evolving fuzzy systems - Methodologies, advanced concepts and applications, Springer-Verlag, Berlin, Heidelberg.

Dovžan, D., Škrjanc, I., 2011, Recursive clustering based on a Gustafson-Kessel algorithm, Evolving Systems, 2(1), pp. 15-24.

Iglesias, J.A., Angelov, P., Ledezma, A., Sanchis, A., 2012, Creating evolving user behavior profiles automatically, IEEE Transactions on Knowledge and Data Engineering, 24(5), pp. 854-867.

Lughofer, E., 2013, On-line assurance of interpretability criteria in evolving fuzzy systems - Achievements, new concepts and open issues, Information Sciences, 251, pp. 22-46.

Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M., 2015, An overview on fault diagnosis and nature-inspired optimal control of industrial process applications, Computers in Industry, 74, pp. 75-94.

Kangin, D., Angelov, P., Iglesias, J.A., 2016, Autonomously evolving classifier TEDAClass, Information Sciences, 366, pp. 1-11.

Za’in, C., Pratama, M., Lughofer, E., Anavatti, S.G., 2017, Evolving type-2 web news mining, Applied Soft Computing, 54, pp. 200-220.

Dovžan, D., Logar, V., Škrjanc, I., 2015, Implementation of an evolving Fuzzy Model (eFuMo) in a monitoring system for a waste-water treatment process, IEEE Transactions on Fuzzy Systems, 23(5), pp. 1761-1776.

Platt, J., 1991, A resource allocating network for function interpolation, Neural Computation, 3(2), pp. 213-225.

Ali, S.H.A., Ozawa, S., Ban, T., Nakazato, J., Shimamura, J., 2016, A neural network model for detecting DDoS attacks using darknet traffic features, Proc. 2016 International Joint Conference on Neural Networks, Vancouver, BC, Canada, pp. 2979-2985.

Juang, C.-F., Lin, C.-T., 1998, An on-line self-constructing neural fuzzy inference network and its applications, IEEE Transactions on Fuzzy Systems, 6(1), pp. 12-32.

Prasad, M., Lin, C.-T., Li, D.-L., Hong, C.-T., Ding, W.-P., Chang, J.-Y., 2017, Soft-boosted self-constructing neural fuzzy inference network, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 584-588.

Tzafestas, S.G., Zikidis, K.C., 2001, NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31(5), 797-802.

Tzafestas, S.G., Zikidis, K.C., 2002, NeuroFAST: high accuracy neuro-fuzzy modeling, Proc. 2002 IEEE International Conference on Artificial Intelligence Systems, Geelong, Australia, pp. 228-235.

Kasabov, N.K., Song, Q., 2002, DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and its application for time-series prediction, IEEE Transactions on Fuzzy Systems, 10(2), pp. 144-154.

Riza, L.S., Bergmeir, C., Herrera, F., Benitez, J.M., 2014, Learning from data using the R package “FRBS”, Proc. 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, pp. 2149-2155.

Lin, F.-J., Lin, C.-H., Shen, P.-H., 2002, Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive, IEEE Transactions on Fuzzy Systems, 9(5), pp. 751-759.

Wang, N., Er, M.J., 2015, Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances, IEEE Transactions on Control Systems Technology, 23(3), pp. 991-1002.

Angelov, P., Filev, D., 2004, An approach to online identification of Takagi-Sugeno fuzzy models, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498.

Moshtaghi, M., Bezdek, J.C., Leckie, C., Karunasekera, S., Palaniswami, M., 2015, Evolving fuzzy rules for anomaly detection in data streams, IEEE Transactions on Fuzzy Systems, 23(3), pp. 688-700.

Lughofer, E., Klement, E.P., 2005, FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems, Proc. 14th IEEE International Conference on Fuzzy Systems, Reno, NV, USA, pp. 915-920.

Xie, B.-K., Lee, S.-J., 2014, A modified scheme for all-pairs evolving fuzzy classifiers, Proc. 2014 International Conference on Machine Learning and Cybernetics, Lanzhou, China, vol. 2, pp. 573-578.

Pratama, M., Anavatti, S.G., Angelov, P., Lughofer, E., 2014, PANFIS: A novel incremental learning machine, IEEE Transactions on Neural Networks and Learning Systems, 25(1), pp. 55-68.

Precup, R.-E., Preitl, S., Bojan-Dragos, C.-A., Radac, M.-B., Szedlak-Stinean, A.-I., Hedrea, E.-L., Roman, R.-C., 2016, Evolving Takagi-Sugeno fuzzy modeling applications of incremental online identification algorithms, Proc. XIII International SAUM Conference on Systems, Automatic Control and Measurements, Niš, Serbia, pp. 3-10.

Precup, R.-E., Filip, H.-I., Radac, M.-B., Pozna, C., Dragos, C.-A., Preitl, S., 2012, Experimental results of evolving Takagi-Sugeno fuzzy models for a nonlinear benchmark, Proc. 2012 IEEE 3rd International Conference on Cognitive Infocommunications, Kosice, Slovakia, pp. 567-572.

Precup, R.-E., Filip, H.-I., Radac, Petriu, E.M., Preitl, S., Dragos, C.-A., 2014, Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems, Applied Soft Computing, 24, pp. 1155-1163.

Precup, R.-E., Voisan, E.-I., Petriu, E.M., Radac, M.-B., Fedorovici, L.-O., 2015, Implementation of evolving fuzzy models of a nonlinear process, Proc. 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, vol. 1, pp. 5-14.

Precup, R.-E., Voisan, E.-I., Petriu, E.M., Radac, M.-B., Fedorovici, L.-O., 2016, Gravitational search algorithm-based evolving fuzzy models of a nonlinear process, in: Informatics in Control, Automation and Robotics, Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds.), Springer International Publishing, Cha,: Lecture Notes in Electrical Engineering, vol. 383, pp. 51-62.

Precup, R.-E., Teban, T.-A., Alves de Oliveira, T.E., Petriu, E.M., 2016, Evolving fuzzy models for myoelectric-based control of a prosthetic hand, Proc. 2016 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, pp. 72-77.

Precup, R.-E., Radac, M.-B., Petriu, E.M., Roman, R.-C., Teban, T.-A., Szedlak-Stinean, A.-I., 2016, Evolving fuzzy models for the position control of twin rotor aerodynamic systems, Proc. 2016 IEEE 14th International Conference on Industrial Informatics, Poitiers, France, pp. 237-242.

Precup, R.-E., Bojan-Dragos, C.-A., Hedrea, E.-L., Borlea, I.-D., Petriu, E.M., 2017, Evolving fuzzy models for anti-lock braking systems, Proc. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Annecy, France, pp. 1-6.

Preitl, S., Precup, R.-E., 1996, On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots, Scientific Bulletin of UPT, Transactions on Automatic Control and Computer Science, 41(2), pp. 47-55.

Precup, R.-E., Preitl, S., 1997, Popov-type stability analysis method for fuzzy control systems, Proc. Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, vol. 2, pp. 1306-1310.

Škrjanc, I., Blažič, S., Matko, D., 2002, Direct fuzzy model-reference adaptive control, International Journal of Intelligent Systems, 17(10), pp. 943-963.

Baranyi, P., 2004, TP model transformation as a way to LMI-based controller design, IEEE Transactions on Industrial Electronics, 51(2), pp. 387-400.

Milosavljević, Č., Peruničić-Draženović, B., Veselić, B., Mitić, D., 2007, A new design of servomechanism with digital sliding mode, Electrical Engineering, 89(3), pp. 233-244.

Filip, F.G., 2008, Decision support and control for large-scale complex systems, Annual Reviews in Control, 32(1), pp. 61-70.

Antić, D., Milojković, M., Jovanović, Z., Nikolić, S., 2010, Optimal design of the fuzzy sliding mode control for a DC servo drive, Strojniški vestnik - Journal of Mechanical Engineering, 56(7-8), pp. 455-463.

Sánchez Boza, A., Haber Guerra, R., Gajate, A., 2011, Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach, Engineering Applications of Artificial Intelligence, 24(2), pp. 209-219.

Pozna, C., Minculete, N., Precup, R.-E., Kóczy, L.T., Ballagi, Á., 2012, Signatures: Definitions, operators and applications to fuzzy modeling, Fuzzy Sets and Systems, 201, pp. 86-104.

Precup, R.-E., Doboli, S., Preitl, S., 2000, Stability analysis and development of a class of fuzzy control systems, Engineering Applications of Artificial Intelligence, 13(3), pp. 237-247.

Nikolić, S., Antić, D., Danković, B., Milojković, M., Jovanović, Z., Perić, S., 2010, Orthogonal functions applied in antenna positioning, Advances in Electrical and Computer Engineering, 10(4), pp. 35-42.

Vaščák, J., Hirota, K., 2011, Integrated decision-making system for robot soccer, Journal of Advanced Computational Intelligence and Intelligent Informatics, 15(2), pp. 156-163.

Chiou, J.-S., Tsai, S.-H., 2012, Stability and stabilization of Takagi-Sugeno fuzzy switched system with time-delay, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(5), pp. 615-621.

Horváth, L., Rudas, I.J., 2013, Active knowledge for the situation-driven control of product definition, Acta Polytechnica Hungarica, 10(2), pp. 217-234.

Milosavljević, Č., Peruničić-Draženović, B., Veselić, B., 2013, Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation, IEEE Transactions on Industrial Informatics, 9(2), pp. 920-927.

Derr, K.W., Manic, M., 2015, Wireless sensor networks - node localization for various industry problems, IEEE Transactions on Industrial Informatics, 11(3), pp. 752-762.

Ramos, J.V., Dourado, A., 2004, On line interpretability by rule base simplification and reduction, Proc. European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems EUNITE 2004, Aachen, Germany, pp. 1-6.

Aires, L., Araújo, J., Dourado, A., 2009, Industrial monitoring by evolving fuzzy systems, Proc. Joint 2009 IFSA World Congress and 2009 EUSFLAT Conference, Lisbon, Portugal, pp. 1358-1363.

Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B., 2014, Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers, Expert Systems with Applications, 41(4), pp. 1168-1175.

Arsene, O., Dumitrache, I., Mihu, I., 2015, Expert system for medicine diagnosis using software agents, Expert Systems with Applications, 42(4), 1825-1834.

Precup, R.-E., Sabau, M.-C., Petriu, E.M., 2015, Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems, Applied Soft Computing, 27, 575-589.

Kazakov, A.L., Lempert, A.A., 2015, On mathematical models for optimization problem of logistics infrastructure, International Journal of Artificial Intelligence, 13(1), pp. 200-210.

Moharam, A., El-Hosseini, M.A., Ali, H.A., 2015, Design of optimal PID controller using NSGA-II algorithm and level diagram, Studies in Informatics and Control, 24(3), pp. 301-308.

Osaba, E., Onieva, E., Dia, F., Carballedo, R., Lopez, P., Perallos, A., 2015, A migration strategy for distributed evolutionary algorithms based on stopping non-promising subpopulations: A case study on routing problems, International Journal of Artificial Intelligence, 13(2), 46-56.

Ćojbašić, Ž., Nikolić, V., Petrović, E., Pavlović, V., Tomić, M., Pavlović, I., Ćirić, I., 2014, A real time neural network based finite element analysis of shell structure, Facta Universitatis, Series: Mechanical Engineering 12(2), pp. 149-155.

Tar, J.K., Bitó, J.F., Rudas, I.J., 2016, Contradiction resolution in the adaptive control of underactuated mechanical systems evading the framework of optimal controllers, Acta Polytehnica Hungarica, 13(1), pp. 97-121.

Castro, J.R., Castillo, O., Sanchez, M.A., Mendoza, O., Rodríguez Díaz, A., Melin, P., 2016, Method for higher order polynomial Sugeno fuzzy inference systems, Information Sciences, 351, pp. 76-89.

Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y., 2016, Particle swarm optimization with interswarm interactive learning strategy, IEEE Transactions on Cybernetics, 46(10), pp. 2238-2251.

Solos, I.P., Tassopoulos, I.X., Beligiannis, G.N., 2016, Optimizing shift scheduling for tank trucks using an effective stochastic variable neighbourhood approach, International Journal of Artificial Intelligence, 14(1), pp. 1-26.

Fakharian, A., Rahmani, R., 2016, An optimal controlling approach for voltage regulation and frequency stabilization in islanded microgrid system, Control Engineering and Applied Informatics, 18(4), 107-114.

Precup, R.-E., Sabau, M.-C., Dragos, C.-A., Radac, M.-B., Fedorovici, L.-O., Petriu, E.M., 2014, Particle swarm optimization of fuzzy models for anti-lock braking systems, Proc. 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems, Linz, Austria, pp. 1-6.

Dragos, C.-A., Preitl, S., Precup, R.-E., Pirlea, D., Nes, C.-S., Petriu E.M., Pozna, C., 2010, Modeling of a vehicle with continuously variable transmission, Proc. 19th International Workshop on Robotics in Alpe-Adria-Danube Region, Budapest, Hungary, pp. 441-446.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4