AUTOMOTIVE APPLICATIONS OF EVOLVING TAKAGI-SUGENO-KANG FUZZY MODELS
Abstract
Keywords
Full Text:
PDFReferences
Sayed Mouchaweh, M., Devillez, A., Villermain Lecolier, G., Billaudel, P., 2002, Incremental learning in fuzzy pattern matching, Fuzzy Sets and Systems, 132(1), pp. 49-62.
Liu, P.X., Meng, M.Q.-H., 2004, Online data-driven fuzzy clustering with applications to real-time robotic tracking, IEEE Transactions on Fuzzy Systems, 12(3), pp. 516-523.
Wang, W., Vrbanek, Jr., J., 2008, An evolving fuzzy predictor for industrial applications, IEEE Transactions on Fuzzy Systems, 16(6), pp. 1439-1449.
Lughofer, E., 2011, Evolving fuzzy systems - Methodologies, advanced concepts and applications, Springer-Verlag, Berlin, Heidelberg.
Dovžan, D., Škrjanc, I., 2011, Recursive clustering based on a Gustafson-Kessel algorithm, Evolving Systems, 2(1), pp. 15-24.
Iglesias, J.A., Angelov, P., Ledezma, A., Sanchis, A., 2012, Creating evolving user behavior profiles automatically, IEEE Transactions on Knowledge and Data Engineering, 24(5), pp. 854-867.
Lughofer, E., 2013, On-line assurance of interpretability criteria in evolving fuzzy systems - Achievements, new concepts and open issues, Information Sciences, 251, pp. 22-46.
Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M., 2015, An overview on fault diagnosis and nature-inspired optimal control of industrial process applications, Computers in Industry, 74, pp. 75-94.
Kangin, D., Angelov, P., Iglesias, J.A., 2016, Autonomously evolving classifier TEDAClass, Information Sciences, 366, pp. 1-11.
Za’in, C., Pratama, M., Lughofer, E., Anavatti, S.G., 2017, Evolving type-2 web news mining, Applied Soft Computing, 54, pp. 200-220.
Dovžan, D., Logar, V., Škrjanc, I., 2015, Implementation of an evolving Fuzzy Model (eFuMo) in a monitoring system for a waste-water treatment process, IEEE Transactions on Fuzzy Systems, 23(5), pp. 1761-1776.
Platt, J., 1991, A resource allocating network for function interpolation, Neural Computation, 3(2), pp. 213-225.
Ali, S.H.A., Ozawa, S., Ban, T., Nakazato, J., Shimamura, J., 2016, A neural network model for detecting DDoS attacks using darknet traffic features, Proc. 2016 International Joint Conference on Neural Networks, Vancouver, BC, Canada, pp. 2979-2985.
Juang, C.-F., Lin, C.-T., 1998, An on-line self-constructing neural fuzzy inference network and its applications, IEEE Transactions on Fuzzy Systems, 6(1), pp. 12-32.
Prasad, M., Lin, C.-T., Li, D.-L., Hong, C.-T., Ding, W.-P., Chang, J.-Y., 2017, Soft-boosted self-constructing neural fuzzy inference network, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 584-588.
Tzafestas, S.G., Zikidis, K.C., 2001, NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31(5), 797-802.
Tzafestas, S.G., Zikidis, K.C., 2002, NeuroFAST: high accuracy neuro-fuzzy modeling, Proc. 2002 IEEE International Conference on Artificial Intelligence Systems, Geelong, Australia, pp. 228-235.
Kasabov, N.K., Song, Q., 2002, DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and its application for time-series prediction, IEEE Transactions on Fuzzy Systems, 10(2), pp. 144-154.
Riza, L.S., Bergmeir, C., Herrera, F., Benitez, J.M., 2014, Learning from data using the R package “FRBS”, Proc. 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, pp. 2149-2155.
Lin, F.-J., Lin, C.-H., Shen, P.-H., 2002, Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive, IEEE Transactions on Fuzzy Systems, 9(5), pp. 751-759.
Wang, N., Er, M.J., 2015, Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances, IEEE Transactions on Control Systems Technology, 23(3), pp. 991-1002.
Angelov, P., Filev, D., 2004, An approach to online identification of Takagi-Sugeno fuzzy models, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498.
Moshtaghi, M., Bezdek, J.C., Leckie, C., Karunasekera, S., Palaniswami, M., 2015, Evolving fuzzy rules for anomaly detection in data streams, IEEE Transactions on Fuzzy Systems, 23(3), pp. 688-700.
Lughofer, E., Klement, E.P., 2005, FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems, Proc. 14th IEEE International Conference on Fuzzy Systems, Reno, NV, USA, pp. 915-920.
Xie, B.-K., Lee, S.-J., 2014, A modified scheme for all-pairs evolving fuzzy classifiers, Proc. 2014 International Conference on Machine Learning and Cybernetics, Lanzhou, China, vol. 2, pp. 573-578.
Pratama, M., Anavatti, S.G., Angelov, P., Lughofer, E., 2014, PANFIS: A novel incremental learning machine, IEEE Transactions on Neural Networks and Learning Systems, 25(1), pp. 55-68.
Precup, R.-E., Preitl, S., Bojan-Dragos, C.-A., Radac, M.-B., Szedlak-Stinean, A.-I., Hedrea, E.-L., Roman, R.-C., 2016, Evolving Takagi-Sugeno fuzzy modeling applications of incremental online identification algorithms, Proc. XIII International SAUM Conference on Systems, Automatic Control and Measurements, Niš, Serbia, pp. 3-10.
Precup, R.-E., Filip, H.-I., Radac, M.-B., Pozna, C., Dragos, C.-A., Preitl, S., 2012, Experimental results of evolving Takagi-Sugeno fuzzy models for a nonlinear benchmark, Proc. 2012 IEEE 3rd International Conference on Cognitive Infocommunications, Kosice, Slovakia, pp. 567-572.
Precup, R.-E., Filip, H.-I., Radac, Petriu, E.M., Preitl, S., Dragos, C.-A., 2014, Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems, Applied Soft Computing, 24, pp. 1155-1163.
Precup, R.-E., Voisan, E.-I., Petriu, E.M., Radac, M.-B., Fedorovici, L.-O., 2015, Implementation of evolving fuzzy models of a nonlinear process, Proc. 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, vol. 1, pp. 5-14.
Precup, R.-E., Voisan, E.-I., Petriu, E.M., Radac, M.-B., Fedorovici, L.-O., 2016, Gravitational search algorithm-based evolving fuzzy models of a nonlinear process, in: Informatics in Control, Automation and Robotics, Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds.), Springer International Publishing, Cha,: Lecture Notes in Electrical Engineering, vol. 383, pp. 51-62.
Precup, R.-E., Teban, T.-A., Alves de Oliveira, T.E., Petriu, E.M., 2016, Evolving fuzzy models for myoelectric-based control of a prosthetic hand, Proc. 2016 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, pp. 72-77.
Precup, R.-E., Radac, M.-B., Petriu, E.M., Roman, R.-C., Teban, T.-A., Szedlak-Stinean, A.-I., 2016, Evolving fuzzy models for the position control of twin rotor aerodynamic systems, Proc. 2016 IEEE 14th International Conference on Industrial Informatics, Poitiers, France, pp. 237-242.
Precup, R.-E., Bojan-Dragos, C.-A., Hedrea, E.-L., Borlea, I.-D., Petriu, E.M., 2017, Evolving fuzzy models for anti-lock braking systems, Proc. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Annecy, France, pp. 1-6.
Preitl, S., Precup, R.-E., 1996, On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots, Scientific Bulletin of UPT, Transactions on Automatic Control and Computer Science, 41(2), pp. 47-55.
Precup, R.-E., Preitl, S., 1997, Popov-type stability analysis method for fuzzy control systems, Proc. Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, vol. 2, pp. 1306-1310.
Škrjanc, I., Blažič, S., Matko, D., 2002, Direct fuzzy model-reference adaptive control, International Journal of Intelligent Systems, 17(10), pp. 943-963.
Baranyi, P., 2004, TP model transformation as a way to LMI-based controller design, IEEE Transactions on Industrial Electronics, 51(2), pp. 387-400.
Milosavljević, Č., Peruničić-Draženović, B., Veselić, B., Mitić, D., 2007, A new design of servomechanism with digital sliding mode, Electrical Engineering, 89(3), pp. 233-244.
Filip, F.G., 2008, Decision support and control for large-scale complex systems, Annual Reviews in Control, 32(1), pp. 61-70.
Antić, D., Milojković, M., Jovanović, Z., Nikolić, S., 2010, Optimal design of the fuzzy sliding mode control for a DC servo drive, Strojniški vestnik - Journal of Mechanical Engineering, 56(7-8), pp. 455-463.
Sánchez Boza, A., Haber Guerra, R., Gajate, A., 2011, Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach, Engineering Applications of Artificial Intelligence, 24(2), pp. 209-219.
Pozna, C., Minculete, N., Precup, R.-E., Kóczy, L.T., Ballagi, Á., 2012, Signatures: Definitions, operators and applications to fuzzy modeling, Fuzzy Sets and Systems, 201, pp. 86-104.
Precup, R.-E., Doboli, S., Preitl, S., 2000, Stability analysis and development of a class of fuzzy control systems, Engineering Applications of Artificial Intelligence, 13(3), pp. 237-247.
Nikolić, S., Antić, D., Danković, B., Milojković, M., Jovanović, Z., Perić, S., 2010, Orthogonal functions applied in antenna positioning, Advances in Electrical and Computer Engineering, 10(4), pp. 35-42.
Vaščák, J., Hirota, K., 2011, Integrated decision-making system for robot soccer, Journal of Advanced Computational Intelligence and Intelligent Informatics, 15(2), pp. 156-163.
Chiou, J.-S., Tsai, S.-H., 2012, Stability and stabilization of Takagi-Sugeno fuzzy switched system with time-delay, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(5), pp. 615-621.
Horváth, L., Rudas, I.J., 2013, Active knowledge for the situation-driven control of product definition, Acta Polytechnica Hungarica, 10(2), pp. 217-234.
Milosavljević, Č., Peruničić-Draženović, B., Veselić, B., 2013, Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation, IEEE Transactions on Industrial Informatics, 9(2), pp. 920-927.
Derr, K.W., Manic, M., 2015, Wireless sensor networks - node localization for various industry problems, IEEE Transactions on Industrial Informatics, 11(3), pp. 752-762.
Ramos, J.V., Dourado, A., 2004, On line interpretability by rule base simplification and reduction, Proc. European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems EUNITE 2004, Aachen, Germany, pp. 1-6.
Aires, L., Araújo, J., Dourado, A., 2009, Industrial monitoring by evolving fuzzy systems, Proc. Joint 2009 IFSA World Congress and 2009 EUSFLAT Conference, Lisbon, Portugal, pp. 1358-1363.
Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B., 2014, Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers, Expert Systems with Applications, 41(4), pp. 1168-1175.
Arsene, O., Dumitrache, I., Mihu, I., 2015, Expert system for medicine diagnosis using software agents, Expert Systems with Applications, 42(4), 1825-1834.
Precup, R.-E., Sabau, M.-C., Petriu, E.M., 2015, Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems, Applied Soft Computing, 27, 575-589.
Kazakov, A.L., Lempert, A.A., 2015, On mathematical models for optimization problem of logistics infrastructure, International Journal of Artificial Intelligence, 13(1), pp. 200-210.
Moharam, A., El-Hosseini, M.A., Ali, H.A., 2015, Design of optimal PID controller using NSGA-II algorithm and level diagram, Studies in Informatics and Control, 24(3), pp. 301-308.
Osaba, E., Onieva, E., Dia, F., Carballedo, R., Lopez, P., Perallos, A., 2015, A migration strategy for distributed evolutionary algorithms based on stopping non-promising subpopulations: A case study on routing problems, International Journal of Artificial Intelligence, 13(2), 46-56.
Ćojbašić, Ž., Nikolić, V., Petrović, E., Pavlović, V., Tomić, M., Pavlović, I., Ćirić, I., 2014, A real time neural network based finite element analysis of shell structure, Facta Universitatis, Series: Mechanical Engineering 12(2), pp. 149-155.
Tar, J.K., Bitó, J.F., Rudas, I.J., 2016, Contradiction resolution in the adaptive control of underactuated mechanical systems evading the framework of optimal controllers, Acta Polytehnica Hungarica, 13(1), pp. 97-121.
Castro, J.R., Castillo, O., Sanchez, M.A., Mendoza, O., Rodríguez Díaz, A., Melin, P., 2016, Method for higher order polynomial Sugeno fuzzy inference systems, Information Sciences, 351, pp. 76-89.
Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y., 2016, Particle swarm optimization with interswarm interactive learning strategy, IEEE Transactions on Cybernetics, 46(10), pp. 2238-2251.
Solos, I.P., Tassopoulos, I.X., Beligiannis, G.N., 2016, Optimizing shift scheduling for tank trucks using an effective stochastic variable neighbourhood approach, International Journal of Artificial Intelligence, 14(1), pp. 1-26.
Fakharian, A., Rahmani, R., 2016, An optimal controlling approach for voltage regulation and frequency stabilization in islanded microgrid system, Control Engineering and Applied Informatics, 18(4), 107-114.
Precup, R.-E., Sabau, M.-C., Dragos, C.-A., Radac, M.-B., Fedorovici, L.-O., Petriu, E.M., 2014, Particle swarm optimization of fuzzy models for anti-lock braking systems, Proc. 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems, Linz, Austria, pp. 1-6.
Dragos, C.-A., Preitl, S., Precup, R.-E., Pirlea, D., Nes, C.-S., Petriu E.M., Pozna, C., 2010, Modeling of a vehicle with continuously variable transmission, Proc. 19th International Workshop on Robotics in Alpe-Adria-Danube Region, Budapest, Hungary, pp. 441-446.
DOI: https://doi.org/10.22190/FUME170505011P
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4