MESOSCALE DEFORMATION-INDUCED SURFACE PHENOMENA IN LOADED POLYCRYSTALS

Varvara Romanova, Ruslan Balokhonov, Olga Zinovieva

DOI Number
10.22190/FUME210102006R
First page
187
Last page
198

Abstract


The paper reviews the results of numerical analyses for the micro-and mesoscale deformation-induced surface phenomena in three-dimensional polycrystals with the explicit account for the grain structure. The role of the free surface and grain boundaries in the appearance of the grain-scale stress concentrations and plastic strain nucleation is illustrated on the examples of aluminum polycrystals. Special attention is paid to the discussion of mesoscale deformation-induced surface roughening under uniaxial tension.


Keywords

Polycrystals, Free surface, Grain boundaries, Deformation-induced roughness, Microstructure-based calculations, Mesomechanics

Full Text:

PDF

References


Popov, V., 2010, Contact mechanics and friction. Springer, Berlin, Heidelberg, p. 362.

Popov, V., Pohrt, R., Li, Q., 2017, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction 5, pp. 308–325.

Joe, J., Thouless, M.D., Barber, J.R., 2020, Effect of surface roughness on adhesive instabilities for the elastic layer, Front. Mech. Eng., 6, 31.

Ostermeyer, G.-P., Popov, V.L., Shilko, E., Vasiljeva, O. (Eds.), 2021, Multiscale Biomechanics and Tribology of Inorganic and Organic Systems, Springer International Publishing, p. 565.

Shanyavskiy, A.A., Soldatenkov, A.P., 2020, Scales of metal fatigue limit, Phys Mesomech, 23, pp. 120–127.

Shanyavsky, A.A., 2015, Scales of metal fatigue cracking, Phys Mesomech, 18, pp. 163–173.

Sauzay,M., Gilormini P., 2001, Surface and cyclic microplasticity, Fatigue Fract. Eng. Mater. Struct., 23, pp. 573-579.

Chen, J.Q., Gao, H.T., Hu, X.L., Yang, L.Q., Ke, D.W., Liu, X.H., Yan, S., Lu, R.H., Misra, R.D.K., 2020, The significant size effect on nucleation and propagation of crack during tensile deformation of copper foil: Free surface roughening and crystallography study, Mater. Sci. Eng. A, 790, 139678.

Stoudt, M.R., Levine, L.E., Creuziger, A., Hubbard, J.B., 2011, The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy, Mater. Sci. Eng. A, 530, pp. 107-116.

Solhjoo, S., Halbertsma, P. J., Veldhuis, M., Toljaga, R., Pei, Y., 2020, Effects of loading conditions on free surface roughening of AISI 420 martensitic stainless steel, Mater. Proc. Tech., 275, 116311.

Yoshida, K., 2014, Effects of grain-scale heterogeneity on surface roughness and sheet metal necking, Int. J. Mech. Sci., 83, pp. 48-56.

Panin, A.V., Romanova, V.A., Balokhonov, R.R., Perevalova, O.B., Sinyakova, E.A., Emelyanova, O.S., Leontieva-Smirnova, M.V., Karpenko, N.I., 2012, Mesoscopic surface folding in EK-181 steel polycrystals under uniaxial tension, Phys Mesomech, 15, pp. 94–103.

Romanova, V.A., Balokhonov, R.R., Batukhtina, E.E., Emelianova E.S., Sergeev M.V., 2019, On the Solution of Quasi-Static Micro- and Mesomechanical Problems in a Dynamic Formulation, Phys Mesomech, 22, pp. 296–306.

Romanova, V., Balokhonov, R., Emelianova, E., Zinovieva, O., Zinoviev, A., 2019, Microstructure-based simulations of quasistatic deformation using an explicit dynamic approach, Facta Univesitatis-Series Mechanical Engineering, 17(2), pp. 243-254.

Radchenko, P.A., Batuev, S.P., Radchenko, A.V., 2021, Numerical analysis of concrete fracture under shock wave loading, Phys. Mesomech. 24(1), doi: 10.1134/S1029959921010069.

Romanova, V., Balokhonov, R., 2021, A method of step-by-step packing and its application in generating 3D microstructures of polycrystalline and composite materials, Engineering with Computers, 37, pp. 241–250.

Guilhem, Y., Basseville, S., Curtit, F., Stéphan, J-M., Cailletaud, G., 2013, Numerical investigations of the free surface effect in three-dimensional polycrystalline aggregates, Comput. Mater. Sci., 70, pp. 150-162.

Trusov, P.V., Sharifullina, E.R., Shveykin, A.I., 2019, Multilevel Model for the Description of Plastic and Superplastic Deformation of Polycrystalline Materials, Phys Mesomech, 22, pp. 402–419.

Shavshukov, V.E., 2020, Extreme Strain Fluctuations in Polycrystalline Materials, Phys Mesomech, 23, pp. 13–20.

Barbe, F., Decker, L., Jeulin, D., Cailletaud, G., 2001, Intergranular and intragranular behavior of polycrystalline aggregates. Part I: FE model, Int. J. of Plasticity, 17(4), pp. 513–536.

Guo, Y., Collins, D.M., Tarleton, E., Hofmann, F., Tischler, J., Liu, W., Xu, R., Wilkinson, A.J., Britton, T.B., 2015, Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D, Acta Mater., 96, pp. 229-236.

Zavdoveev, A., Rogante, M., Poznyakov, V., Heaton, M., Acquier, P., Kim, H. S., Baudin, T., Kostin, V., 2020, Development of the PC-GMAW welding technology for TMCP steel in accordance with welding thermal cycle, welding technique, structure, and properties of welded joints, Reports in Mechanical Engineering, 1(1), pp. 26-33.

D. Caillard, J.L. Martin (Eds), 2003, Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Materials Series 8, Pergamon.

Brlić, T., Rešković, S., Jurković, S., Janeš, G., 2020, Mathematical modeling of the influence parameters during formation and propagation of the Lüders bands, Facta Universitatis-Series Mechanical Engineering, 18(4), pp. 595-610.

Farber, V.M., Morozova, A.N., Khotinov, V.A. et al., 2020, Plastic Flow in a Chernov–Luders Band in Ultrafine-Grained 08G2B Steel, Phys Mesomech, 23, pp. 340–346.

Romanova, V., Balokhonov, R., Schmauder, S., 2011, Three-dimensional analysis of mesoscale deformation phenomena in welded low-carbon steel, Mater. Sci. Eng. A, 528, pp. 5271-527.

Dmitriev, A.I., Nikonov, A.Y., Shugurov, A.R. et al., 2019, The Role of Grain Boundaries in Rotational Deformation in Polycrystalline Titanium under Scratch Testing, Phys Mesomech, 22, pp. 365–374.

Dmitriev, A.I., Nikonov, A.Y., Filippov, A.E. et al., 2019, Molecular dynamics study of the evolution of rotational atomic displacements in a crystal subjected to shear deformation, Phys Mesomech, 22, pp. 375–381.

Popov, V.L., 2020, Coefficients of restitution in normal adhesive impact between smooth and rough elastic bodies, Reports in Mechanical Engineering, 1(1), pp. 103-109.

Popov, M., Li, Q., 2018, Multimode active control of friction, dynamic ratchets and actuators, Phys. Mesomech. 21, pp. 24–31.

Cinat, P., Gnecco, G., Paggi, M., 2020, Multi-Scale Surface Roughness Optimization Through Genetic Algorithms, Front. Mech. Eng., 6, 29.

Haritos, G.K., Hager, J.W., Amos, A.K., Salkind, M.J., Wang, A.S.D., 1988, Mesomechanics: the microstructure-mechanics connection, Int. J. Solids Structures, 24, pp. 1081-1096.

Bykov, V.G., 2020, Development of sliding regimes in faults and slow strain waves, Phys. Mesomech., 23(3), pp. 271–278.

Panin, V.E., Shulepov, I.A., Derevyagina, L.S., S. V. Panin, A. I. Gordienko, I. V. Vlasov, 2020, Nanoscale Mesoscopic Structural States in Low-Alloy Steels for Martensitic Phase Formation and Low-Temperature Toughness Enhancement, Phys Mesomech, 23, pp. 376–383.




DOI: https://doi.org/10.22190/FUME210102006R

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4