Cover Image


Ion I. Cotaescu

DOI Number
First page
Last page


It is shown that on the de Sitter manifolds the tachyonic geodesics are restricted such that the classical tachyons cannot exist on this manifold at any time. On the contrary, the theory of the scalar quantum tachyons is free of any restriction. The tachyonic scalar and Dirac plane waves are deduced in this geometry, pointing out that these are well-defined, behaving as tempered distributions at any moment.


de Sitter, classical tachyons, scalar tachyons, Dirac tachyons

Full Text:



A. Sen: Int. J. Mod. Phys. A 20 (2005) 5513.

J. Dixmier: Bull. Soc. Math. France 89 (1961) 9. B. Takahashi: Bull. Soc. Math. France 91 (1963) 289.

B. Allen and T. Jacobson: Commun. Math. Phys. 103 (1986) 669. N. C. Tsamis and R. P. Woodard: J. Math. Phys. 48 (2007) 052306.

J. P. Gazeau and M. V. Takook: J. Math. Phys. 41 (2000) 5920. P. Bartesaghi, J. P. Gazeau, U. Moschella and M. V. Takook: Class. Quantum. Grav. 18 (2001) 4373. T. Garidi, J. P. Gazeau and M. Takook: J. Math. Phys. 44 (2003) 3838.

H. Epstein and U. Moschella: arXiv:1403.3319 [hep-th]

O. Nachtmann: Commun. Math. Phys. 6 (1967) 1. 7. I. I. Cotaescu: Mod. Phys. Lett. A 28 (2013) 1350033.

I. I. Cotaescu: GRG 43 (2011) 1639.

I. I. Cotaescu and C. Crucean: Phys. Rev. D 87 (2013) 044016.

N. D. Birrel and P. C. W. Davies: Quantum Fields in Curved Space Cambridge University Press, Cambridge, 1982.

I. I. Cotaescu: Phys. Rev. D 65 (2002) 084008.

J. Bandukwala and D. Shay: Phys. Rev. D 9 (1974) 889.

A. Chodos, A. I. Hauser and V. A. Kostelecky: Phys. Lett. B150 (1985) 431.

U. D. Jentschura and B. J. Wundt: J. Phys. A 45 (2012) 444017.

D. N. Vulcanov and G. S. Djordjevic: Romanian J. Phys 57 (2012) 1011.


  • There are currently no refbacks.

ISSN 0354-4656 (print)

ISSN 2406-0879 (online)