Cover Image

VOLTAGE DEPENDENT MODELS OF THE FORMATIVE TIME DELAY IN ARGON

Suzana N. Stamenković, Vidosav Lj. Marković, Aleksandar P. Jovanović, Marjan N. Stankov

DOI Number
10.2298/FUPCT1702081S
First page
081
Last page
093

Abstract


Measurements of the formative time delay t_f  at different working voltages U in argon at low pressure are presented. The well-known decreasing voltage behavior of the formative time delay is theoretical described by different empirical and semiempirical models. In addition to introduced empirical models, some models from the literature are applied to elucidate experimentally obtained t_f(U) dependence. However, the models from the literature show a good agreement with the experimental data only at low overvoltages \DeltaU (\DeltaU=U-U_s where U_s is the static breakdown voltage).  Therefore, empirical corrections are made based on data analysis, and good compatibility is achieved in a whole range of working voltages.

 

HIGHLIGHTS

  • Presentation of the formative time delay measurements at different working voltages in argon at low pressure
  • Application of empirical and semi-empirical models for description of t_f(U) dependence
  • Application of the t_f(U) models from the literature with and without empirical corrections

Keywords

argon discharge, electrical breakdown, formative time delay, empirical models, semi-empirical models

Full Text:

PDF

References


Chapman, B.N., 1980. Glow discharge processes: sputtering and plasma etching, John Wiley and Sons, New York.

Davidson, P.M., 1955. Phys. Rev. 99, 1072-1974. DOI:https://doi.org/10.1103/PhysRev.99.1072

Druyvesteyn, M.J., Penning, F.M., 1940. Rev. Mod. Phys., 12, 87-174. DOI:https://doi.org/10.1103/RevModPhys.12.87

Dutton, J., Haydon, S.C., Jones, F.L., with mathematical appendix by P.M. Davidson, 1953. Brit. J. Appl. Phys. 4, 170-175. DOI:https://doi.org/10.1088/0508-3443/4/6/303

Fisher, L.H., Bederson B., 1951. Phys. Rev. 81, 109-114. DOI:https://doi.org/10.1103/PhysRev.81.109

Fletcher, R.C., 1949. Phys. Rev. 76, 1501-1511. DOI:https://doi.org/10.1103/PhysRev.76.1501

Fridman, A., 2008. Plasma chemistry, Cambridge University Press, Cambridge, New York.

Gänger, B., 1953. Der elektrische Durchschlag von Gasen, Springer-Verlag, Berlin.

Jaumann G., 1895. Ann. Phys. (Leipzig), 291, 656-683. DOI:10.1002/andp.18952910811

Kachickas, G.A., Fisher, L.H., 1952. Phys. Rev. 88, 878-883. DOI:https://doi.org/10.1103/PhysRev.88.878

Kachickas, G.A., Fisher, L.H., 1953. Phys. Rev. 91, 775-779. DOI:https://doi.org/10.1103/PhysRev.91.775

Kruithof, A.A., 1940. Physica, 7, 519-540. DOI:https://doi.org/10.1016/S0031-8914(40)90043-X

Lieberman, M.A., Lichtenberg, A.J., 1994. Principles of Plasma Discharges and Material Processing, John Willey & Sons, New York.

Maier, W.B., Kadish, A., Buchenauer, C.J., Robiscoe, R.T., 1993. IEEE Ttransactions on plasma science, 21, 676-683. DOI:10.1109/27.256787

Makabe, T., Petrović, Z.Lj., 2006. Plasma Electronics: Applications in Microelectronic Device Fabrication, CRC Press, Taylor & Francis Group, New York.

Marković, V.Lj., Petrović, Z.Lj., Pejović, M.M., 1997. Plasma Sources Sci. Technol. 6, 240-246. DOI:https://doi.org/10.1088/0963-0252/6/2/018

Marković, V.Lj., Gocić, S.R., Stamenković, S.N., Petrović, Z.Lj., 2005. Physics of plasmas, 12, 073502-1-8.

DOI:http://aip.scitation.org/doi/10.1063/1.1942499

Marković, V.Lj., Stamenković, S.N., Gocić, S.R., 2007. Contrib. Plasma Phys., 47, 413-420. DOI: 10.1002/ctpp.200710054

Meek, J.M., Craggs, J.D., (Eds.), 1978. Electrical Breakdown of Gases, John Wiley & Sons, Chichester, pp. 655-688.

Mesyats, G.A., 2005. Pulsed Power, Springer, New York.

Morgan, C.G., 1956. Phys. Rev. 104, 566-571. DOI:https://doi.org/10.1103/PhysRev.104.566

Phelps, A.V., Petrović, Z.Lj., 1999, Plasma Sources Sci. Technol. 8, R21–R44. DOI:https://doi.org/10.1088/0963-0252/8/3/201

Raether, H., 1941.a Z. Phys, 117, 375-398. DOI:https://doi.org/10.1007/BF01676336

Raether, H., 1941.b Z. Phys. 117, 524-542. DOI:https://doi.org/10.1007/BF01668950

Raether H., 1949. Die Entwicklung der Elektronenlawine in den Funkenkanal. In: Flügge S., Trendelenburg F. (eds) Ergebnisse der Exakten Naturwissenschaften. Ergebnisse der Exakten Naturwissenschaften, vol 22. Springer, Berlin, Heidelberg. DOI:https://doi.org/10.1007/978-3-662-25834-7_3

Raizer, Yu.P., 1991. Gas discharge physics, Springer-Verlag, Berlin.

Raju, G.G., 2006. Gaseous electronics: theory and practice, CRC Press, Taylor & Francis Group, Boca Raton.

Schade, R., 1937. Z. Phys. 104, 487-510. DOI:https://doi.org/10.1007/BF01330065

Stamenković, S.N., Marković, V.Lj., Jovanović, A.P., Stankov, M.N., 2017. Romanian reports in physics, 69, 408-1-16.

von Engel A., 1965. Ionized Gases, Clarendon Press, Oxford

Zissis, G., Kitsinelis, S., 2009. J. Phys. D: Appl. Phys., 42, 173001. DOI:https://doi.org/10.1088/0022-3727/42/17/173001


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)