CHEMICAL REMEDIATION TECHNOLOGIES

Tijana Jovanović, Milica Petrović, Miloš Kostić, Danijela Bojić, Aleksandar Bojić

DOI Number
-
First page
1
Last page
15

Abstract


Environmental pollution remains one of the most serious world problems. Great efforts are made to limit the release of harmful compounds into the environment, and a variety of methods for remediation of soil, surface water and groundwater have been developed over the years. Chemical remediation technologies are of great interest since they can remove and degrade pollutants in contaminated sites. This paper focuses on several chemical remediation technologies, such as precipitation, flocculation, adsorption and ion-exchange, chemical oxidation, soil washing and flushing and electrokinetic remediation. Remediation technologies are almost always combined with one another, although they can be used separately. Choosing an appropriate techonolgy will depend on the type of the pollutants and site conditions, and it should be done in such manner so that the most cost-effective and efficient technology is chosen. Even though some of the technologies are used full-scale, research should be focused on enhancing the existing, and developing new remediation technologies.

Full Text:

PDF

References


Aieta, E. M., Reagan K. M., Lang J. S., McRaynolds L., Kang J-W., Glaze W. H., 1988. J Am Water Works Ass, 80, 64–72. doi: https://doi.org/10.1002/j.1551-8833.1988.tb03039.x.

Amstaetter, K., Eek, E., Cornelissen, G., 2012. Chemosphere, 87, 573–578. doi: 10.1016/j.chemosphere.2012.01.007.

Anipsitakis, G. P. and Dionysiou, D. D., 2004. Environ. Sci. and Techol., 38, 3705–3712. doi: https://doi.org/10.1021/es035121o.

Asadollahfardi, G., Gisel, M. N., Rezaee, M., 2015. ‘Electrochemical Remediation Technology: Fundamentals, Benefits and Challenges’, in: Third International Symposium On Environmental and Water Resources Engineering, Tehran, Iran.

Aydin, M. E., Lazarova Z., Tor A., Aydin S., 2012. ‘Coagulation, flocculation and chemical precipitation’, in: Ersoz, M. and Barrott, L. (eds) Best Practice Guide on Metals Removal from Drinking Water by Treatment. London: IWA Publishing, pp. 29–36. doi: https://doi.org/10.2166/9781780400686

Baskaran, V., Dhivakar, M. R., Gunasegaran, V., 2020. Environ. Nanotechnol. Monit. Manag., 14, 100395. doi: 10.1016/j.enmm.2020.100395

Bennedsen, L. R., 2014. ‘In situ Chemical Oxidation: The Mechanisms and Applications of Chemical Oxidants for Remediation Purposes’, in: Søgaard, E. G. (ed.) Chemistry of Advanced Environmental Purification Processes of Water. Elsevier B.V., pp. 13–74. doi: https://doi.org/10.1016/C2009-0-16598-4.

Bharti, S., 2019. Non-Metallic Material Science, 01, 11–21. doi: 10.30564/nmms.v1i1.645

Bratby, J., 1980. Coagulation and Flocculation, England: Uplands Press Ltd, Croydon.

Burgess, R. M., Perron M. M., Friedman, C. L., Suuberg, E. M., Pennell K. G., Cantwell M. G., Pelletier M. C., Ho K. T., Serbst J. R., Ryba S. A., 2009. Environ. Toxicol. Chem., 28, 26–35. doi: 10.1897/08-050.1

Dada, E., Njoku K., Osuntoki A., Akinola M., 2015. EJSM, 8, 606–615. doi: 10.4314/ejesm.v8i5.13

Diaw, P. A., Oturan N., Seye M. D. G., Mbaye O. M. A., Mbaye M., Coly A., Aaron J-J., Oturan M. A., 2020. J. Electroanal. Chem., 864, 114087. doi: http://dx.doi.org/10.1016/j.jelechem.2020.114087.

Dominguez, C. M., Romero, A., Checa-Fernandez A., Santos, A., 2021. Sci. Total Environ., 751, 141754. doi: https://doi.org/10.1016/j.scitotenv.2020.141754.

Gregory, J., 1983. Effluent Treat. J., 23, p. 199.

Gregory, J., 1993. Stability and Flocculation of Suspensions, in: Ayazi

Shamlou, P. (ed.) Proc. Solid-Liquid Dispersions. Butterworth-Heinemann, Ch. 3.

Gu, X., Lu S., Li L., Qiu Z., Sui Q., Lin K., Luo Q., 2011. Ind. Eng. Chem. Res., 50, 11029–11036,. doi: https://doi.org/10.1021/ie201059x.

Honeyman, B. D., Santschi, P. H., 1988. Environ. Sci. Technol., 22, 862–871. doi: https://doi.org/10.1021/es00173a002

Hughes, M. A., 1990. ‘Coagulation and Flocculation, Part 1’, in: Svarosky, L. (ed.) Solid-Liquid Separation, fourth ed. Butterworth & Co, Oxford, pp. 104-128.

International Atomic Energy Agency, 2002., Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers. Technical report series no. 408, IAEA, Vienna.

Jakob, L., Hartnik T., Henrisken T., Elmquist M., 2012. Chemosphere, 88, 699–705. doi: 10.1016/j.chemosphere.2012.03.080

Jankaite, A., Saulius, V., 2005. J. Environ. Eng. Lands. Manag., 13, 109–113. doi: 10.3846/16486897.2005.9636854

Ji, Y., Dong C., Kong, D., Lu J., Zhou Q., 2015. Chem. Eng. J., 263, 45–54. doi: 10.1016/j.cej.2014.10.097.

Khan, F. I., Husain, T., Hejazi, R., 2004. J. Environ. Manag., 71, 95–122. doi: https://doi.org/10.1016/j.jenvman.2004.02.003.

Kim, Y-H., Kim D-H., Jung H-B., Hwang B-R., 2012. Separ. Sci. Tech., 47, 2230–2234. doi: 10.1080/01496395.2012.697507

Kuhlman, M. I., Greenfield, T. M., 2006. J. Hazard. Mater., 66, 31–45. doi: 10.1016/s0304-3894(98)00212-x

Langlais, B., Reckhow, D. A., Brink, D. R., 1991. Ozone in Water Treatment. Boca Raton: Lewis Publishers, CRC Press, Boca Raton.

Lee, S. W., Kim J. Y., Lee J. U., Ko I., Kim K. W., 2004. Environ. Geochem. Health, 26, 403–409. doi: 10.1007/s10653-005-0928-3

Liu, F., Oturan N., Zhang, H., Oturan M. A., 2020. Chemosphere, 249, 126176. doi: https://doi.org/10.1016/j.chemosphere.2020.126176.

Lynch, R. J., Mutoni A., Ruggeri R., Winfield K. C., 2007. Electrochim. Acta, 52, 3432–3440. doi: 10.1016/j.electacta.2006.06.049

Martel, R., Gelinas P. J., Lefebvre R., Hebert A., Foy S., Saumure L., Roy A., Roy N., 2002. Laboratory and Field Soil Washing Experiments with Surfactant Solutions, in: Tedde, D. W., Pohland, F. G. (Eds.) Emerging Technologies in Hazardous Waste Management 8. Springer, Boston. doi: https://doi.org/10.1007/0-306-46921-9_6.

Mason, T. J., Lorimer, J. P., 1989. Sonochemistry: Theory, Applications, and Uses of Ultrasound in Chemistry. Wiley‐Interscience, New York.

Niroumand, H., Nazir, R., Kassim, K. A., 2012. Int. J. Electrochem. Sci, 7, 5708–5715.

Oleszczuk, P., Hale S. E., Lehmann J., Cornelissen G., 2012. Bioresour. Technol., 111, 84–91. doi: 10.1016/j.biortech.2012.02.030

Ong, S. K., Kolz, A., 2007. Chemical Treatment Technologies, in: Bhandari, A. et al. (Eds.), Remediation Technologies for Soils and Groundwater. American Society of Civil Engineering, pp. 79–132.

Pei, G., Zhu Y., Cai X., Shi W., Li H., 2017. Chemosphere, 185, 1112–1121. doi: http://dx.doi.org/10.1016/j.chemosphere.2017.07.098.

Pi, K., Wang Y., Xie X., Ma T., Liu Y., Su C., Zhu Y., Wang Z., 2016. Water Research, 109, 337–346. doi: 10.1016/j.watres.2016.10.056.

Rashed, M. N., 2013. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, in: Rashed, M. N. (Ed.) Organic Pollutants - Monitoring, Risk and Treatment. InTech Open, Rijeka. doi: 10.5772/54048.

Reddy, K. R., Cameselle, C., 2009. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. John Wiley & Sons, Inc. doi: 10.1002/9780470523650.

Reddy, K. R., Danda, S., Saichek, R. E. (2004) ‘Complicating Factors of Using Ethylenediamine Tetraacetic Acid to Enhance Electrokinetic Remediation of Multiple Heavy Metals in Clayey Soils’, J. Environ. Eng., 130, 1357–1366. doi: 10.1061/(ASCE)0733-9372(2004)130:11(1357)

Riser-Roberts, E., 1998. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, first ed. Lewis Publishers, Boca Raton. doi: https://doi.org/10.1201/9780367802547.

Salehizadeh, H., Yan, N., Farnood, R., 2018. Biotechnol. Adv., 36, 92–119. doi: 10.1016/j.biotechadv.2017.10.002

Senevirathna, S. T. M. L. D., Mahinroosta R., Li M., KrishnaPillai K., 2021. Chemosphere, 262, 127606. doi: https://doi.org/10.1016/j.chemosphere.2020.127606.

Shenbagavalli, S., Mahimairaja, S., 2010. Afr J Environ Sci Technol, 4, 930–935.

Siegrist, R. L., Urynowicz M. A., West O., Crimi M., 2000. Water Environ. Res., 10, 203–224. doi: 10.2175/193864700784545388.

Silva, A., Delerue-Matos, C., Fiuza, A., 2005. J. Hazar. Mater., 124, 224–229. doi: doi:10.1016/j.jhazmat.2005.05.022

Suslick, K. S., Hammerton, D., 1986. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 33, 143–147. doi: 10.1109/T-UFFC.1986.26806.

Tadda, M. A. Ashan A., Shitu A., ElSergany M., Arunkumar T., Jose B., Abdur Razzaque M., Nik Daud N. N., 2016. JACEPR, 2, 7–13.

Thomé, A., Reginatto, C., Vanzetto, G., Braun A. B., 2018. Remediation Technologies Applied in Polluted Soils: New Perspectives in This Field’, in: Zhan, L., Yunmin, C., Bouazza, A. (Eds.) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. Springer Nature Singapore, pp. 186–203. doi: 10.1007/978-981-13-2221-1_11.

Tridib Tripathy, De, B. R., 2006. J. Phy. Sci., 10, 93–127.

Villen-Guzman, M., Paz-Garcia J. M., Rodriguez-Maroto, J.M., Gomez-Lahoz C., Garcia-Herruzo F., 2014. Sep. Sci. Technol., 49, 1461–1468. doi: 10.1080/01496395.2014.898306.

Wang, G., Szecsody, J. E., Ayalos N. M., Qafoku N. P., Freedman, V. L., 2020. J. Contam. Hydrol., 235, 103705. doi: https://doi.org/10.1016/j.jconhyd.2020.103705.

Wang, Z., Wang H., Wang H., Li Q., Li, Y., 2020. Ecotox. Environ. Safe., 203, 110981. doi: https://doi.org/10.1016/j.ecoenv.2020.110981.

Yan, X., Liu Q., Wang J., Liao X., 2017. J. Environ. Sci., 57, 104–109. doi: http://dx.doi.org/10.1016/j.jes.2016.10.015.

Yang, Z-H., Verpoort F., Dong C-D., Chen C-W., Chen S., Kao C-M., 2020. Process Saf. Environ. Prot. 138, 18–26. doi: https://doi.org/10.1016/j.psep.2020.02.032.

Yasui, K., 2010. Fundamentals of Acoustic Cavitation and Sonochemistry, in: Pankaj, A. M. (Ed.) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht.

Yeung, A. T., 2010. ‘REMEDIATION TECHNOLOGIES FOR CONTAMINATED SITES’, in Chen, Y., Zhan, L., and Tang, X. W. (Eds.) Advances in Environmental Geotechnics: Proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8-10, 2009, Springer International Publishing, pp. 328–369. doi: 10.1007/978-3-642-04460-1.

Zhaoa, S., Li F., Zhou M., Zhu, X., Li X., 2016. Procedia Environ. Sci., 31, 274–279 doi: https://doi.org/10.1016/j.proenv.2016.02.036.


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)