PURIFICATION OF CONTAMINATED WASTEWATER WITH THE HELP OF GRAPHENE COMPOSITES WITH HYDROGELS

Zorica Eraković, Danijela Stefanović

DOI Number
https://doi.org/10.22190/FUWLEP2201027E
First page
027
Last page
036

Abstract


Lack of clean water requires the use of new wastewater treatment technologies. Adsorption is a simple and effective method for removing contaminants from contaminated water. Graphene composites with hydrogels have found application in wastewater treatment because they have unique properties such as porous structure, unique morphology, good rheological properties, non-toxicity, etc. The paper presents a literature overview of potential solutions to wastewater treatment using composite graphene and graphene oxide with hydrogel-like adsorbents. The mentioned composite compounds have been used in the treatment or elimination of various hazardous substances. In this work, we have investigated the possible adsorption of different classes of colored pollutants (paints) and pesticides (both organic and inorganic).

Keywords

contaminated water, pesticides, dyes, composites graphene-hydrogels

Full Text:

PDF

References


World Bank report, Available at: http://www.worldbank.org/en/topic/water/overview

United Nation, UN Water, Water Quality and Wastewater, Available at: https://www.unwater.org/water-facts/quality-and-wastewater/

Huang, Y., Li, J., Chen, X., Wang, X. (2014). Applications of conjugated polymer based composites in wastewater purification. Rsc Advances, 4(107), pp 62160-62178.

Singh, L., Goga, G., Rathi, M. K. (2012). Latest developments in composite materials. IOSR Journal of Engineering, 2(8), 152-158.

Jaspal, D., Malviya, A. (2020). Composites for wastewater purification: A review. Chemosphere, 246, 125788.

Liao, G., Hu, J., Chen, Z., Zhang, R., Wang, G., Kuang, T. (2018). Preparation, properties, and applications of graphene-based hydrogels. Frontiers in chemistry, 450.

R. Ðurović, T. Ðorđević, Assessment of pesticide levels in plant products from agricultural area of Belgrade, Serbia. The Book of Abstracts The 11th European Meeting on Environmental Chemistry (EMEC 11), Portorož, Slovenia, (2010a), 91-93.

Marković, M., Cupać, S., Đurović, R., Milinović, J., Kljajić, P. (2010). Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Archives of Environmental Contamination and Toxicology, 58(2), 341-351.

Levine, M. J. (2007). Pesticides: a toxic time bomb in our midst 1st ed., (pp. 213-214). Westport: Praeger Publishers., 9-13.

Greene, S.A., Pohanish., R. P., (2005) Sittig's Handbook of Pesticides and Agricultural Chemicals, William Andrew Publishing, Norwich, 15-30.

Edwards, C. A., (1973) Environmental pollution by pesticides, Plenum Press, London and New York, 36-88.

Schreinemachers, P., Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food policy, 37(6), 616-626.

Prasad, R., Bhattacharyya, A., Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology, 8, 1014.

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1-16.

Coupe, R. H., Blomquist, J. D. (2004). Water‐soluble pesticides in finished water of community water supplies. Journal‐American Water Works Association, 96(10), 56-68.

Kralj, M. B., Černigoj, U., Franko, M., & Trebše, P. (2007). Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion—Products and toxicity studies. Water research, 41(19), 4504-4514.

Čolović, M. B., Krstić, D. Z., Vasić, V. M., Bondžić, A., Uscumlic, G. S., Petrovic, S. D. (2013). Organophosphorus insecticides: Toxic effects and bioanalytical tests for evaluating toxicity during degradation processes. Hemijska industrija, 67(2), 217-230.

Wang, D. Q., Yu, Y. X., Zhang, X. Y., Zhang, S. H., Pang, Y. P., Zhang, X. L., Fu, J. M. (2012). Polycyclic aromatic hydrocarbons and organochlorine pesticides in fish from Taihu Lake: Their levels, sources, and biomagnification. Ecotoxicology and environmental safety, 82, 63-70.

Chin, C. P., Wu, H. S., Wang, S. S. (2011). New approach to pesticide delivery using nanosuspensions: research and applications. Industrial & Engineering Chemistry Research, 50(12), 7637-7643.

Aouada, F. A., de Moura, M. R., Orts, W. J., Mattoso, L. H. (2010). Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. Journal of Materials Science, 45(18), 4977-4985.

Singh, A., Dhiman, N., Kar, A. K., Singh, D., Purohit, M. P., Ghosh, D., & Patnaik, S. (2020). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of hazardous materials, 385, 121525.

Gusain, R., Kumar, N., & Ray, S. S. (2020). Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 405, 213111.

Shaviv, A. (2001). Advances in controlled-release fertilizers. Advances in Agronomy, 71, 1-49.

Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials. Progress in polymer science, 36(9), 1254-1276.

Coughlin, R. W., Farooque, M. (1980). Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons. Industrial & Engineering Chemistry Process Design and Development, 19(2), 211-219.

Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C., Dilbaghi, N. (2014). Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate polymers, 101, 1061-1067.

Anton, N., Benoit, J. P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of controlled release, 128(3), 185-199.

Yin, J., & Deng, B. (2015). Polymer-matrix nanocomposite membranes for water treatment. Journal of membrane science, 479, 256-275.

Coughlin, R. W., Farooque, M. (1980). Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons. Industrial & Engineering Chemistry Process Design and Development, 19(2), 211-219.

Kah, M., Beulke, S., Tiede, K., Hofmann, T. (2013). Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology., 43, 1823-1867.

Prasad, R., Bhattacharyya, A., Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology, 8, 1014.

Green, J. M., Beestman, G. B. (2007). Recently patented and commercialized formulation and adjuvant technology. Crop Protection, 26(3), 320-327.

Parrish, S. K., Beardmore, R. A., Herold, A.E., US Patent Application 0,153,461. (2003).

Claude, J.P., Favier, P., Gabard J., Green, J.M., Huby J.P., Thalinger, P.P., European Patent Office, EP0968649A1 (2000).

El Bahri, Z., Taverdet, J. L. (2007). Elaboration and characterisation of microparticles loaded by pesticide model. Powder Technology, 172(1), 30-40.

Chin, C. P., Wu, H. S., Wang, S. S. (2011). New approach to pesticide delivery using nanosuspensions: research and applications. Industrial & Engineering Chemistry Research, 50(12), 7637-7643.

Shakil, N. A., Singh, M. K., Pandey, A., Kumar, J., Pankaj, Parmar, V. S., Watterson, A. C. (2010). Development of poly (ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. Journal of Macromolecular Science®, Part A: Pure and Applied Chemistry, 47(3), 241-247.

Tong, Y., Shao, L., Li, X., Lu, J., Sun, H., Xiang, S., ..., Wu, X. (2018). Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. Journal of agricultural and food chemistry, 66(11), 2616-2622.

Shukla, S. P., Gupta, G. S. (1992). Toxic effects of omega chrome red ME and its treatment by adsorption. Ecotoxicology and environmental safety, 24(2), 155-163.

Deshpande, S. D. (2001). Ecofriendly dyeing of synthetic fibres. Indian Journal of Fibre & Textile Research, 26, 36-42.

Shaul, G. M., Holdsworth, T. J., Dempsey, C. R., & Dostal, K. A. (1991). Fate of water soluble azo dyes in the activated sludge process. Chemosphere, 22(1-2), 107-119.

Hao, O. J., Kim, H., Chiang, P. C. (2000). Decolorization of wastewater. Critical reviews in environmental science and technology, 30(4), 449-505.

Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment international, 30(7), 953-971.

McKay, G., Otterburn, M. S., Sweeney, A. G. (1980). The removal of colour from effluent using various adsorbents—IV. Silica: Equilibria and column studies. Water Research, 14(1), 21-27.

Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment international, 30(7), 953-971.

Morais, L. C., Freitas, O. M., Goncalves, E. P., Vasconcelos, L. T., Beca, C. G. (1999). Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Research, 33(4), 979-988.

Choy, K. K., McKay, G., Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling, 27(1-2), 57-71.

Benkli, Y. E., Can, M. F., Turan, M. U. S. T. A. F. A., Celik, M. S. (2005). Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water research, 39(2-3), 487-493.

Dinçer, A. R., Güneş, Y., Karakaya, N., Güneş, E. (2007). Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresource Technology, 98(4), 834-839.

Faria, P. C. C., Orfao, J. J. M., Pereira, M. F. R. (2004). Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water research, 38(8), 2043-2052.

Annadurai, G., Chellapandian, M., & Krishnan, M. R. V. (1999). Adsorption of reactive dye on chitin. Environmental Monitoring and Assessment, 59(1), 111-119.

Akter, M., Bhattacharjee, M., Dhar, A. K., Rahman, F. B. A., Haque, S., Rashid, T. U., Kabir, S. M. (2021). Cellulose-based hydrogels for wastewater treatment: A concise review. Gels, 7(1), 30.

Karimi, M. H., Mahdavinia, G. R., Massoumi, B., Baghban, A., Saraei, M. (2018). Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. International journal of biological macromolecules, 113, 361-375.

Mahdavinia G.R., Mosallanezhad A., (2016) Facile and green rout to prepare magnetic and chitosan-crosslinked κ-carrageenan bionanocomposites for removal of methylene blue, Journal of Water Process Engineering, 10, 143-155.

Khan, S. A., Hussain, D., Abbasi, N., Khan, T. A. (2022). Deciphering the adsorption potential of a functionalized green hydrogel nanocomposite for aspartame from aqueous phase. Chemosphere, 289, 133232.

Sivakumar, R., Lee, N. Y. (2022). Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere, 286, 131890.

Tiwari, J. N., Mahesh, K., Le, N. H., Kemp, K. C., Timilsina, R., Tiwari, R. N., Kim, K. S. (2013). Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 56, 173-182

Sui, Z., Zhang, X., Lei, Y., Luo, Y. (2011). Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon, 49(13), 4314-4321.

Guo, H., Jiao, T., Zhang, Q., Guo, W., Peng, Q., Yan, X. (2015). Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale research letters, 10(1), 1-10.

Shen, L., Jin, Z., Xu, W., Jiang, X., Shen, Y. X., Wang, Y., Lu, Y. (2019). Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel. Industrial & Engineering Chemistry Research, 58(19), 7817-7824.

Mani, S. K., Bhandari, R. (2022). Microwave-assisted synthesis of self-assembled network of Graphene oxide-Polyethylenimine-Polyvinyl alcohol hydrogel beads for removal of cationic and anionic dyes from wastewater. Journal of Molecular Liquids, 345, 117809.

Mittal, H., Al Alili, A., Morajkar, P. P., Alhassan, S. M. (2021). GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose–A versatile adsorbent for the treatment of dyes contaminated wastewater. International Journal of Biological Macromolecules, 167, 1248-1261.

Liu, X., Zhou, Y., Nie, W., Song, L., Chen, P. (2015). Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. Journal of materials science, 50(18), 6113-6123.




DOI: https://doi.org/10.22190/FUWLEP2201027E

Refbacks

  • There are currently no refbacks.


ISSN   0354-804X (Print)

ISSN   2406-0534 (Online)