URBAN SOUND RECOGNITION USING DIFFERENT FEATURE EXTRACTION TECHNIQUES
Abstract
Keywords
Full Text:
PDFReferences
Socoró, J. C., Sevillano, X., & Alías, F. Analysis and automatic detection of anomalous noise events in real recordings of road traffic noise for the LIFE DYNAMAP project. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 253, No. 6, pp. 1943-1952),. Institute of Noise Control Engineering. (August, 2016). Available: https://doi.org/10.1515/noise-2018-0006
Socoró, J. C., Alías, F., Alsina R. M, Sevillano X., Q. B3-Report describing the ANED algorithms for low and high computation capacity sensors. 2016
Bello, J. P., Silva, C., Nov, O., Dubois, R. L., Arora, A., Salamon, J. Sonyc: A system for monitoring, analyzing, and mitigating urban noise pollution. Communications of the ACM, 62(2), 68-77. 2019. Available: https://doi.org/10.1145/3224204
Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P.. Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE CPS Computing (pp. 335-342). IEEE. (2013, August) Available: 10.1109/GreenCom-iThings-CPSCom.2013.75
Su, Y., Zhang, K., Wang, J., Zhou, D., & Madani, K. Performance analysis of multiple aggregated acoustic features for environment sound classification. Applied Acoustics, 158, 107050. (2020) Available: https://doi.org/10.1016/j.apacoust.2019.107050
Alsouda,Y., Pllana,S., Kurti, A.. Iot-based urban noise identification using machine learning: performance of SVM, KNN, bagging, and random forest. In Proceedings of the international conference on omni-layer intelligent systems (pp. 62-67). (2019, May) Available: https://doi.org/10.1145/3312614.3312631
Zhang, Zhichao, et al. "Learning attentive representations for environmental sound classification." IEEE Access 7 (2019): 130327-130339.Fu Z., Lu, G., Ming Ting, K., Zhang, D. A survey of audio-based music classification and annotation [Journal] // IEEE Transactions on Multimedia. 2:Vol.13. - pp. 303-319. (April 2011) DOI: 10.1109/TMM.2010.2098858
Mushtaq, Z., Su, S. F., & Tran, Q. V. Spectral images based environmental sound classification using CNN with meaningful data augmentation. Applied Acoustics, 172, 107581. (2021) Available: https://doi.org/10.1016/j.apacoust.2020.107581
Geiger, J., & Helwani, K. Improving event detection for audio surveillance using Gabor filterbank features. In 23rd European Signal Processing Conference (pp. 714–718). (2015) Available: 10.1109/EUSIPCO.2015.7362476
Mulimani, M., & Koolagudi, S. G. Segmentation and characterization of acoustic event spectrograms using singular value decomposition. Expert Systems with Applications, 120 413–425. (2019) Available: https://doi.org/10.1016/j.eswa.2018.12.004
J. Schroder, B. Cauchi, M. R. Schadler, N. Moritz, K. Adiloglu, J. Anemuller, S. Doclo, B. Kollmeier, and S. Goetze, “Acoustic event detection using signal enhancement and spectro-temporal feature extraction,” in IEEE Workshop on Applicat. Signal Process. Audio Acoust.(WASPAA), pp. 1–3. 2013
Liu, Chengwei, et al. "Environmental Sound Classification Based on Stacked Concatenated DNN using Aggregated Features." Journal of Signal Processing Systems 1-13 (2021). Available: https://doi.org/10.1007/s11265-021-01702-x
Abdoli, S., Cardinal, P., & Koerich, A. L. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Systems with Applications, 136, 252-263. (2019) Available: https://doi.org/10.1016/j.asoc.2019.105912
Salamon, J., Jacoby, C., & Bello, J. P. A dataset and taxonomy for urban sound research. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 1041-1044). (November, 2014) Available: https://doi.org/10.1145/2647868.2655045
Temko, A., Nadeu, C., Macho, D., Malkin, R., Zieger, C., & Omologo, M.. Acoustic event detection and classification. In Computers in the human interaction loop (pp. 61-73). (2009). Springer, London
Mitrović, D., Zeppelzauer, M., & Breiteneder, C. Features for content-based audio retrieval. In Advances in computers (Vol. 78, pp. 71-150). Elsevier. (2010) Available: https://doi.org/10.1016/S0065-2458(10)78003-7
K. Wang and C. Xu. Robust soccer highlight generation with a novel dominant-speech feature extractor. In Proceedings of the IEEE International Conference on Multimedia and Expo, volume 1, pages 591–594, Taipei, Taiwan, Jun. 2004. IEEE, IEEE. 10.1109/ICME.2004.1394261
Chang, C., & Doran, B. Urban Sound Classification: With Random Forest SVM DNN RNN and CNN Classifiers. In CSCI E-81 Machine Learning and Data Mining Final Project Fall 2016. Harvard University Cambridge. 2016
DOI: https://doi.org/10.22190/FUACR211015012D
Refbacks
- There are currently no refbacks.
Print ISSN: 1820-6417
Online ISSN: 1820-6425