PERFORMANCE OF SECURE COMMUNICATION OVER LAMBDA-FISHER-SNEDECOR FADING CHANNELS

Jelena Anastasov, Aleksandra Panajotović, Dejan Milić, Daniela Milović

DOI Number
https://doi.org/10.22190/FUACR220830010A
First page
117
Last page
130

Abstract


In this paper, we investigate the physical layer security (PLS) of the traditional Wyner’s wiretap channel model. Secrecy performance analysis is performed assuming a presence of an active eavesdropper trying to overhear the confidential data transmission from the source node to the predefined destination. In what follows, we derive the lower bound of the secrecy outage probability, the strictly positive secrecy capacity as well as the average secrecy capacity, over the composite a-Fisher-Snedecor (a-F) fading environment. According to the analytical results, numerical results are also shown. The impact of the path loss component, the average signal-to-noise ratios over the main/wiretap channel as well as the impact of the fading, the non-linearity of the propagation medium and the shadowing shaping parameter on the PLS metrics is examined. The overall analysis and the obtained results have a high level of generality and also a high level of applicability since the a-F distribution was recently proposed, as the best fit distribution for the channel characterization of the device-to-device wireless communication in the future Beyond 5G networks.

Keywords

Composite fading channel, physical layer security, device-to-device communication

Full Text:

PDF

References


W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May 2020., doi: 10.1109/MNET.001.1900287.

B. Schneier, “Cryptographic design vulnerabilities,” Computer, vol. 31, no. 9, pp. 29-33, Sept. 1998., do: 10.1109/2.708447.

M. Bloch, J. Barros, M. Rodrigues, and S. McLaughlin, “Wireless Information-Theoretic Security”, IEEE Transaction of Information Theory, vol. 54, no. 6, pp. 2515-2534, 2008., doi: 10.1109/TIT.2008.921908.

R. Liu, W. Trappe, Securing wireless communications at the physical layer, New York, Springer, 2009.

Y. Zou, J. Zhu, X. Wang and L. Hanzo, “A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1727–1765, 2016., doi: 10.1109/JPROC.2016.2558521.

Y. Wu, A. Khisti, C. Xiao, G. Caire, K.K. Wong and X. Gao, “A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 4, pp. 679–695, 2018. doi: 10.1109/JSAC.2018.2825560.

A.D. Wyner, “The Wire-tap Channel,” The Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975., doi: 10.1002/j.1538-7305.1975.tb02040.x

X. Liu, “Probability of Strictly Positive Secrecy Capacity of the Rician-Rician Fading Channel,” IEEE Wireless Communications Letters, vol. 2, no. 1, pp. 50-53, February 2013., doi: 10.1109/WCL.2012.101812.120660.

L. Kong, H. Tran, and G. Kaddoum, “Performance Analysis of Physical Layer Security over α − μ Fading Channel,” Electronics Letters, vol. 52, no. 1, pp. 45–47, 2016., doi: 10.1049/el.2015.2160.

N. Bhargav, S. L. Cotton, and D. E. Simmons, “Secrecy capacity analysis over k-μ fading channels: Theory and applications,” IEEE Transactions on Communications, vol. 64, no. 7, pp. 3011–3024, Jul. 2016., doi: 10.1109/TCOMM.2016.2565580.

J. M. Moualeu, D. B. da Costa, W. Hamouda, U. S. Dias and R. A. A. de Souza, “Physical Layer Security Over -k- and -- Fading Channels”, IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 1025-1029, 2019., doi: 10.1109/TVT.2018.2884832.

G. Pan , C. Tang, X. Zhang, T. Li, Y. Weng and Y. Chen, “Physical-Layer Security Over Non-Small-Scale Fading,” IEEE Transactions on Vehicular Technology, vol.65, no.3, pp. 1326 – 1339, 2016., doi: 10.1109/TVT.2015.2412140.

H. Lei, I. S. Ansari, C. Gao, Y. Guo, G. Pan, and K. A. Qaraqe, “Physical Layer Security over Generalised-K Fading Channels,” IET Communications, vol. 10, no. 16, pp. 2233–2237, 2016., doi: 10.1049/iet-com.2015.0384.

H. Zhao, Y. Liu, A. Sultan-Salem and M. -S. Alouini, “A Simple Evaluation for the Secrecy Outage Probability Over Generalized-K Fading Channels,” IEEE Communications Letters, vol. 23, no. 9, pp. 1479-1483, Sept. 2019., doi: 10.1109/LCOMM.2019.2926360.

J. Sun, X. Li, M. Huang, Y. Ding, J. Jin and G. Pan, “Performance Analysis of Physical Layer Security over k-μ Shadowed Fading Channels,” IET Communications, vol. 12, no. 8, pp. 970-975, 2018., doi: 10.1049/iet-com.2017.1268.

S. K. Yoo, S. L. Cotton, P. C. Sofotasios, M. Matthaiou, M. Valkama and G. K. Karagiannidis, “The Fisher–Snedecor F Distribution: A Simple and Accurate Composite Fading Model,” IEEE Communications Letters, vol. 21, no. 7, pp. 1661-1664, July 2017., doi: 10.1109/LCOMM.2017.2687438.

O. S. Badarneh, P. C. Sofotasios, S. Muhaidat, S. L. Cotton, K. Rabie, and N. Al-Dhahir, “On the secrecy capacity of Fisher-Snedecor F fading channels,” in Proc. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2018., doi: 10.1109/WiMOB.2018.8589137.

L. Kong and G. Kaddoum, “On Physical Layer Security over the Fisher-Snedecor F Wiretap Fading Channels,” IEEE Access vol. 6, pp. 39466–39472, 2018., doi: 10.1109/ACCESS.2018.2853700.

O. S. Badarneh, “The -F Composite Fading Distribution: Statistical Characterization and Applications,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8097-8106, 2020., doi: 10.1109/TVT.2020.2995665.

I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Products, fifth edition, New York, Academic Press, 1994.

The wolfram functions site, [Online ] URL: 〈http://functions.wolfram.com〉

V. S. Adamchik, O. I. Marichev, “The Algorithm for Calculating Integrals of Hypergeometric Type Functions and Its Realization in Reduce System,” ISSAC’90 Conference Proceedings, Tokyo, Japan, pp. 212-224, Tokyo, Japan, 1990.

A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series: Volume 3, More Special Functions, New York: CRC Press Inc, 1990.

A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-Function: Theory and Applications, first edition, Springer Science, New York, 2009.

J.A. Anastasov, N. M. Zdravkovic, and G.T. Djordjevic, “Outage Capacity Evaluation of Extended Generalized-K Fading Channel in the Presence of Random Blockage,” Journal of Franklin Institute, vol. 352, no. 10, pp. 4610–4623, 2015., doi:10.1016/j.jfranklin.2015.07.008.




DOI: https://doi.org/10.22190/FUACR220830010A

Refbacks

  • There are currently no refbacks.


Print ISSN: 1820-6417
Online ISSN: 1820-6425