JOINT ESTIMATION OF STATES AND PARAMETERS OF LINEAR SYSTEMS WITH PARAMETER FAULTS UNDER NON-GAUSSIAN NOISES
Abstract
Keywords
Full Text:
PDFReferences
V. Filipovic, N. Nedic, and V. Stojanovic, “Robust identification of pneumatic servo actuators in the real situations”, Forschung im Ingenieurwesen - Engineering Research, vol. 75, no. 4, pp. 183-196, 2011.
R.E. Kalman, “New Approach to Linear Filtering and Prediction Problems”, Transactions of the ASME – Journal of Basic Engineering, vol. 82, no 1, pp. 35-45, 1960.
Y. H. Chang, Q. Hu, and C.J. Tomlin, “Secure estimation based Kalman Filter for cyber–physical systems against sensor attacks”, Automatica, vol. 95, pp. 399-412, 2018.
L. Chang, F. Zha, and F. Qin, “Indirect Kalman Filtering Based Attitude Estimation for Low-Cost Attitude and Heading Reference Systems”, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1850 – 1858, 2017.
D. Viegas, P. Batista, P. Oliveira and Carlos Silvestre, “Discrete-time distributed Kalman filter design for formations of autonomous vehicles”, Control Engineering Practice, vol. 75, pp. 55-68, 2018.
K. Maes, A. Iliopoulos, W. Weijtjens, C. Devriendt, and G. Lombaert, “Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms”, Mechanical Systems and Signal Processing, vols. 76–77, pp. 592–611, 2016.
A. Cavallo, G. De Maria, C. Natale, S. Pirozzi, “Slipping detection and avoidance based on Kalman filter”, Mechatronics, vol. 24, no. 5, pp. 489-499, 2014.
V. Stojanovic, and N. Nedic, “Identification of time-varying OE models in presence of non-Gaussian noise: Application to pneumatic servo drives”, International Journal of Robust and Nonlinear Control, vol. 26, no. 18, pp. 3974-3995, 2016.
M.T. Rodriguez, and S.P. Banks, “Linear, Time-varying Approximations to Nonlinear Dynamical Systems”. Springer, Berlin, 2010.
H. Cox, “On the estimation of state variables and parameters for noisy dynamic systems”, IEEE Transactions on Automatic Control, vol. 9, no. 1, pp. 5-12, 1964.
L. Ljung, “Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems”, IEEE Transactions on Automatic Control, vol. 24, no. 1, pp. 36-50, 1979.
S. Aksoy, A. Muhurcu, and H. Kizmaz, “State and parameter estimation in induction motor using the Extended Kalman Filtering algorithm”, in Proceedings of the International Symposium Modern Electric Power Systems, pp. 1-5, Wroclaw, Poland, September 2010.
G.L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation”, Journal of Power Sources, vol. 134, no. 2, pp. 277–292, 2004.
A. Carrassi, and S. Vannitsem, “State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics”, Quarterly Journal of the Royal Meteorological Society, vol. 137, no.655, pp. 435-451, 2011.
J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer, 1999.
R. Isermann, “Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems”, Springer, 2011.
V. Barnet, and T. Lewis, Outliers in statistical data, 3rd ed. Wiley-Blackwell, New York, 1994.
P.J. Huber, Robust statistics. Wiley, New York, 1981.
C.J. Masreliez, and R.D. Martin, “Robust Bayesian estimation for the linear model and robustifying the Kalman filter”, IEEE Transactions on Automatic Control, vol. 22, no.3, pp. 361–371, 1977.
V. Stojanovic, and N. Nedic, “Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise”, International Journal of Robust and Nonlinear Control, vol. 26, no. 3, pp. 445-460, 2016.
DOI: https://doi.org/10.22190/FUACR1902113S
Refbacks
- There are currently no refbacks.
Print ISSN: 1820-6417
Online ISSN: 1820-6425