ROBUST RECURSIVE IDENTIFICATION OF HAMMERSTEIN MODELS BASED ON WEISZFALD ALGORITHM
Abstract
Keywords
Full Text:
PDFReferences
T. Soderstrom, P. Stoica, System Identification, Prentice-Hall, New Jersey,1989.
R. Pearson, Exploring Data in Engineering, the Science and Medicine, Oxford University Press, Oxford, 2011.
P. Huber, E. Ronchetti, Robust Statistics, Willey, New York, 2009.
H. Kodomama, B. Huang, R. Ranjan, Y. Zhao, R Tan, N. Sammakneyad, “Approaches to robust process identification: A review and tutorial of probability methods,“ Journal of Process Control, vol. 66, no.6 , pp. 68-83, 2018. [Online]. Available: https://doi.org/10.1016/j.jprocont.2018.02.011
V. Filipovic, “Outlier robust stochastic approximation algorithm for identification of MIMO Hammerstein models,“ Nonlinear Dynamics, vol. 90,no. 2, pp. 1427-1441, 2017. [Online]. Available: http://DOI10.1007/s11071-017-3736-2
V. Filipovic, “A global convergent outlier robust adaptive predictor for MIMO Hammerstein models,“ International Journal of Robust and Nonlinear Control, vol. 27, no.16, pp. 3350-3371, 2017. [Online]. Available: https://doi.org/10.1002/rnc.3705
V. Filipovic ,“Recursive identification of block-oriented nonlinear systems in the presence of outliers,“ Journal of Process Control, vol. 78, no.6, pp. 1-12, 2019. [Online]. Available: https://doi.org/10.1016/ j.jprocont.2019.03.015
M. Sugiyama, Introduction to Statistical Machine Learning, Morgan Kaufman, San Francisco, 2016.
M. Ghanmi, M. Elloumi, H. Salhi, S. Kamoun, “A recursive hierarchical parametric estimation algorithm for nonlinear systems described by Wiener – Hammerstein models,” Asian J. Control, vol. 21, no. 1, pp. 1-10, 2019. [Online]. Available: https://doi.org/10.1002/asjc.2029
F. Giri, E.W. Bai, Block-Oriented Nonlinear System Identification, Springer, Berlin, 2010.
E. Weiszfald, “Sur le point pour lequel la sommedes distances de n points donnes est minimum,” Tohoku Math. J., vol. 43, First series, pp.355-386, 1937. [Online]. Available: http://[pdf]jst.go.jp
E. Weiszfald, “On the point for which the sum of distances to n given points in minimum,” Anu. Oper. Res., vol. 167, no.1, pp. 7-41, 2009. Translate from the French original (Tohoku Math. J. vol. 43, First series, pp. 355-386, 1937. [Online]. Available: http://DOI10.1007/s10479-008-0352-z
P.A. Akimov, A.J. Matasov, “Level of non-optimality of the Weiszfald algorithm in the least-modules method,” Automation and Remote Control, vol. 71, no. 2, pp. 172-184, 2010. [Online]. Available: http://doi:10.1134/S0005117910020025
H.A. Eiselt, H Marianov, Foundations of Location Analysis, Springer, Berlin, 2011.
L. Mallozzi, E. D`Amato, P.M Pardalos, (Eds.), Spatial Interaction Models. Facility Location using Game Theory, Springer, Berlin, 2017.
Beck, S. Sabach, “Weiszfald method: old and new results,” Journal of Optimization Theory and Applications, vol. 164 , no. 1, pp. 1-40, 2015. [Online]. Available: http://DOI10.1007/s10957-011-0586-7
Weber, Theory of the Location of Industries. University of Chicago Press, Chicago, 1909.P. Bloomfield, W.L. Steiger, Least Absolute Deviations: Theory, Applications and Algorithms, Birkhauser, Basel, 1983.
V.I. Mudrov, V.L. Kushko, Methods of Measurements Processing, (in Russian), Radio Svjaz, Moscow, 1983.
S. Boyd,L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
H. Kuhn, A note of Fermat problem. Math. Programming, vol. 4, no.1, pp. 98-107, 1973. [Online]. Available: http://DOI:10.1007/bfo1584648
V. Hutson, J. Pym, M. Cloud, Application of Functional Analysis and Operator Theory, Elsevier, London, 2005.
L. Ljung, T. Soderstrom, Theory and Practice of Recursive Identification, MIT Press, Massachusetts, 1983.
J.T. Barron, A general and adaptive robust loss function, arXiv: 1701.03077v10.
DOI: https://doi.org/10.22190/FUACR1902127F
Refbacks
- There are currently no refbacks.
Print ISSN: 1820-6417
Online ISSN: 1820-6425