GENERATING KNOWLEDGE STRUCTURES FROM OPEN DATASETS' TAGS - AN APPROACH BASED ON FORMAL CONCEPT ANALYSIS
Abstract
Keywords
Full Text:
PDFReferences
S. Kubler, J. Robert, S. Neumaier, J. Umbrich, Y. Le Traon, “Comparison of metadata quality in open data portals using the Analytic Hierarchy Process,” Government Information Quarterly, vol. 35, no.1, pp.13-29, 2018.
S.R. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, ”DBpedia: A Nucleus for a Web of Open Data,” The Semantic Web, Lecture Notes in Computer Science, pp. 722-735, 2007.
N. Veljković, S. Bogdanović-Dinić, L. Stoimenov, “eGovernment openness index,” Proceedings of the 11th European Conference on eGovernment, Ljubljana, pp. 571–577, 2011.
S. Neumaier, J. Umbrich, A. Polleres, “Automated quality assessment of metadata across open data portals,” Journal of Data and Information quality, vol. 8, no.1, pp. 2:1-2:29, 2016.
S. van der Waal, K. Węcel, L. Ermilov, V. Janev, U. Milošević, M. Wainwright, “Lifting open data portals to the data web,” In Linked Open Data--Creating Knowledge Out of Interlinked Data, Springer, Cham, pp. 175-195, 2014.
P. Milic, N. Veljkovic, L. Stoimenov, “Comparative analysis of metadata models on e-government open data platforms,“ IEEE Transactions on Emerging Topics in Computing, 2018.
F. Maali, R. Cyganiak, V. Peristeras, “Enabling Interoperability of Government Data Catalogues,” In Proceedings of EGOV 2010, pp. 339-350, 2010.
M. El Kourdi, A. Bensaid, T.E. Rachidi, “Automatic Arabic document categorization based on the Naïve Bayes algorithm,” Proceedings of the Workshop on Computational Approaches to Arabic Script-based Languages, pp. 51-58, 2004.
V. Korde, C.N. Mahender, “Text classification and classifiers: A survey,” International Journal of Artificial Intelligence & Applications, vol. 3, no. 2, pp. 85-99, 2012.
A.K. Uysal, S. Gunal, “A novel probabilistic feature selection method for text classification,” Knowledge-Based Systems, vol. 36, pp. 226-235, 2012.
V. Korde, C.N. Mahender, “Text classification and classifiers: A survey,” International Journal of Artificial Intelligence & Applications, vol. 3, no. 2, pp. 85-99, 2012.
A.K. Uysal, S. Gunal, “A novel probabilistic feature selection method for text classification,” Knowledge-Based Systems, vol. 36, pp. 226-235, 2012.
R. Jaschke, Formal Concept Analysis and Tag Recommendations in Collaborative Tagging Systems, Dissertations in Artificial Intelligence, 2011.
R. Wille, “Restructuring lattice theory: An approach based on hierarchies of concepts,” Ordered Sets, Springer, Dordrecht, pp. 445–470, 1982.
D.D. Lewis, M. Ringuette, “A comparison of two learning algorithms for text categorization,” Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, 1994.
B. Ganter, G. Stumme, “Formal concept analysis: Methods and applications in computer science,” Technical Report Otto – von – Guericke – Universitat Magdeburg
A. M. Boutari, C. Carpineto, R. Nicolussi, R., “Evaluating term concept association measures for short text expansion: two case studies of clas-sification and clustering, ” In CLA 2010, pp. 163–174, 2010.
O. Prokasheva, A. Onishchenko, S. Gurov, Classification methods based on formal concept analysis, FCAIR 2012 – Formal Concept Analysis Meets Information Retrieval, p. 95, 2012.
S.O. Kuznetsov, Mathematical aspects of concept analysis, Journal of Mathematical Science, Vol. 80, Issue 2, pp. 1654–1698, 1996.
S.O. Kuznetsov, Complexity of Learning in Concept Lattices from Positive and Negative Examples, Discrete Applied Mathematics, No. 142(1–3), pp. 111-125, 2004.
V.K. Finn, The Synthesis of Cognitive Procedures and the Problem of Induction, Autom. Doc. Math. Linguist., 43, pp.149-195, 2009.
V.K. Finn, On machine-oriented formalization of plausible reasoning in the style of F. Bacon and D.S. Mill [in Russian], Semiotika i Informatika, 20, pp.35–101, 1983.
P. Njiwoua, Mephu Nguifo E, Améliorer l'apprentissage à partir d'instances grâce à l'induction de concepts: Le système CIBLe, Revue d'Intelligence Artificielle (RIA), vol. 13, 2, pp. 413–440, Hermes Science, 1999.
Z. Xie, W. Hsu, Z. Liu, M. L. Lee: Concept Lattice based Composite Classifiers for high Predictability, Artificial Intelligence, vol. 139, pp.253–267, Wollongong, Australia, 2002.
P. Njiwoua, E. M. Nguifo, Forwarding the choice of bias LEGAL-F Using Feature Selection to Reduce the complexity of LEGAL, In Proceedings of BENELEARN-97,ILK and INFOLAB, Tilburg University, the Netherlands, pp. 89–98, 1997.
M. Maddouri, Towards a machine learning approach based on incremental concept formation, Intelligent Data Analysis, Volume 8, Issue 3, pp. 267–280, 2004.
Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, International Conference on Machine Learning, pp. 148-156. Morgan Kaufmann Publications, Bari, 1996.
J. Pennington, R. Socher, C. Manning, “Glove: Global vectors for word representation, ” In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532-1543, 2014.
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, "Indexing by latent semantic analysis". Journal of the American Society for Information Science, 41(6): 391–407, 1990.
T. Mikolov, W. T. Yih, G. Zweig, "Linguistic regularities in continuous space word representations", In Proceedings of NAACL-HLT, pages 746–751, 2013
DOI: https://doi.org/10.22190/FUACR201225002B
Refbacks
- There are currently no refbacks.
Print ISSN: 1820-6417
Online ISSN: 1820-6425