LONG-RANGE CORRELATIONS AND CRYPTOCURRENCY MARKET EFFICIENCY

Jelena Radojičić, Ognjen Radović

DOI Number
https://doi.org/10.22190/FUEO221121005R
First page
053
Last page
069

Abstract


This paper examines the market efficiency of the most significant cryptocurrencies, Bitcoin and Ethereum. In the paper, we use several different tests to check the normality of return distribution, long-run correlation and heteroscedasticity of return volatility.We compare the characteristics of cryptocurrency returns with the returns on stocks of the most important companies producing hardware components for cryptocurrency mining. The correlation of returns, trading volume and volatility between cryptocurrencies and selected stocks is tested using a Granger causality test. The research results reject the efficient market hypothesis and show that the cryptocurrency market is a completely new speculative market that is weakly correlated with the stock market.


Keywords

efficient market hypothesis, cryptocurrency markets, random walk hypothesis, the long-run correlations

Full Text:

PDF

References


Al-Yahyaee, K. H., Mensi, W., & Yoon, S. M. (2018). Efficiency, Multifractality, and the Long-Memory Property of the Bitcoin Market: A Comparative Analysis with Stock,Currency, and Gold Markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017

Bariviera, A. F. (2017). The Inefficiency of Bitcoin Revisited: A Dynamic Approach. Economics Letters, 161, 1–4. https://doi.org/10.1016/j.econlet.2017.09.013

Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence. Journal of Econometrics, 52(1-2), 5-59. https://doi.org/10.1016/0304-4076(92)90064-X

Brock, W. A., Dechert, D., Lebaron, B., & Scheinkman, J. (1996). A test for independence based on a correlation dimension. Econometric Review, 15(3), 197-235. https://doi.org/10.1080/07474939608800353

Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton: Princeton University Press.

Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018) Persistence in the cryptocurrency market. Research in International Business and Finance, 46, 141-148. https://doi.org/10.1016/j.ribaf.2018.01.002

Cheah, E.-T., Mishra, T., Parhi, M., & Zhang, Z. (2018). Long Memory Interdependency and Inefficiency in Bitcoin Markets. Economics Letters, 167, 18-25. https://doi.org/10.1016/j.econlet.2018.02.010

Chu, J., Zhang, Y., & Chan, S. (2019). The Adaptive Market Hypothesis in the High Frequency Cryptocurrency Market. International Review of Financial Analysis, 64, 221-231. https://doi.org/10.1016/j.irfa.2019.05.008

Coinmarketcap (2022). Global Cryptocurrency Charts, Total Cryptocurrency MarketCap. Retrieved from https://coinmarketcap.com/charts/

CryptoDataDownload (2022). Coinbase. Retrieved from https://www.cryptodatadownload.com/data/coinbase/

Dimitrova, V., Fernández-Martínez, M., Sánchez-Granero, M., & Trinidad Segovia, J. (2019). Some Comments on Bitcoin Market (in)Efficiency. PloS one 14(7), e0219243. https://doi.org/10.1371/journal.pone.0219243

Elliott D. J., & de Lima, L. (2018). Crypto-assets: their future and regulation. Oliver Wyman, October. Retrieved from https://www.atlantafed.org/-/media/documents/news/conferences/2018/1018-financial-stability-implications-of-new-technology/papers/elliott_crypto-assets.pdf

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417. https://doi.org/10.1111/j.1540-6261.1970.tb00518.x

Fama, E. (1991). Efficient capital markets: II. Journal of Finance, 46(5), 1575-1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x

Gabaix X., Gopikrishnan P., Plerou V., & Stanley H. (2003). A theory of power-law distributions in financial market fluctuations. Nature, 423 (6937), 267-270. https://doi.org/10.1038/nature01624

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross Spectral Methods. Econometrics, 35, 224-238. https://doi.org/10.2307/1912791

Gu, R., Shao, Y., & Wang, Q. (2013). Is the efficiency of stock market correlated with multifractality? an evidence from the shanghai stock market. Physica A: Statistical Mechanics and its Applications, 392(2), 361-370. https://doi.org/10.1016/j.physa.2012.09.008

Hurst, H. E. (1951). The long-term storage capacity of reservoirs. Transaction of the American Society of Civil Engineers, 116, 770-799. https://doi.org/10.1061/TACEAT.0006518

Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, 55(2), 163-172. https://doi.org/10.2307/1403192

Khuntia, S., & Pattanayak, J. (2018). Adaptive Market Hypothesis and Evolving Predictability of Bitcoin. Economics Letters, 167, 26-28. https://doi.org/10.1016/j.econlet.2018.03.005

Mnif, E., Jarboui, A., & Mouakhar K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis. Finance Research Letters, 36, 101647. https://doi.org/10.1016/j.frl.2020.101647

Mnif, E., Salhi, B, Trabelsi, L., & Jarboui, A. (2022). Efficiency and herding analysis in gold-backed cryptocurrencies. Heliyon, 8(12), e11982. https://doi.org/10.1016/j.heliyon.2022.e11982

Noda, A. (2021). On the evolution of cryptocurrency market efficiency. Applied Economics Letters, 28(6), 433-439. https://doi.org/10.1080/13504851.2020.1758617

Peters, E. E. (1994). Fractal Market Analysis- Applying Chaos Theory to Investment and Economics. Wiley.

Takaishi, T. (2018). Statistical properties and multifractality of Bitcoin. Physica A: Statistical Mechanics and Its Applications, 506, 507-519. https://doi.org/10.1016/j.physa.2018.04.046

Tiwari, A. K., Jana, R., Das, D., & Roubaud, D. (2018). Informational Efficiency of Bitcoin–An Extension. Economics Letters, 163, 106-109. https://doi.org/10.1016/j.econlet.2017.12.006

Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82. https://doi.org/10.1016/j.econlet.2016.09.019

Van der Auwera, E., Schoutens, W., Giudici, M. P., & Alessi, L. (2020). Futures and Options on Cryptocurrencies. In Financial Risk Management for Cryptocurrencies (pp. 85-95). Springer, Cham.

Vidal-Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019). Weak Efficiency of the Cryptocurrency Market: a Market Portfolio Approach. Applied Economics Letters, 26(19), 1627-1633. https://doi.org/10.1080/13504851.2019.1591583




DOI: https://doi.org/10.22190/FUEO221121005R

Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons License CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)