LONG-RANGE CORRELATIONS AND CRYPTOCURRENCY MARKET EFFICIENCY
Abstract
This paper examines the market efficiency of the most significant cryptocurrencies, Bitcoin and Ethereum. In the paper, we use several different tests to check the normality of return distribution, long-run correlation and heteroscedasticity of return volatility.We compare the characteristics of cryptocurrency returns with the returns on stocks of the most important companies producing hardware components for cryptocurrency mining. The correlation of returns, trading volume and volatility between cryptocurrencies and selected stocks is tested using a Granger causality test. The research results reject the efficient market hypothesis and show that the cryptocurrency market is a completely new speculative market that is weakly correlated with the stock market.
Keywords
Full Text:
PDFReferences
Al-Yahyaee, K. H., Mensi, W., & Yoon, S. M. (2018). Efficiency, Multifractality, and the Long-Memory Property of the Bitcoin Market: A Comparative Analysis with Stock,Currency, and Gold Markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
Bariviera, A. F. (2017). The Inefficiency of Bitcoin Revisited: A Dynamic Approach. Economics Letters, 161, 1–4. https://doi.org/10.1016/j.econlet.2017.09.013
Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence. Journal of Econometrics, 52(1-2), 5-59. https://doi.org/10.1016/0304-4076(92)90064-X
Brock, W. A., Dechert, D., Lebaron, B., & Scheinkman, J. (1996). A test for independence based on a correlation dimension. Econometric Review, 15(3), 197-235. https://doi.org/10.1080/07474939608800353
Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton: Princeton University Press.
Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018) Persistence in the cryptocurrency market. Research in International Business and Finance, 46, 141-148. https://doi.org/10.1016/j.ribaf.2018.01.002
Cheah, E.-T., Mishra, T., Parhi, M., & Zhang, Z. (2018). Long Memory Interdependency and Inefficiency in Bitcoin Markets. Economics Letters, 167, 18-25. https://doi.org/10.1016/j.econlet.2018.02.010
Chu, J., Zhang, Y., & Chan, S. (2019). The Adaptive Market Hypothesis in the High Frequency Cryptocurrency Market. International Review of Financial Analysis, 64, 221-231. https://doi.org/10.1016/j.irfa.2019.05.008
Coinmarketcap (2022). Global Cryptocurrency Charts, Total Cryptocurrency MarketCap. Retrieved from https://coinmarketcap.com/charts/
CryptoDataDownload (2022). Coinbase. Retrieved from https://www.cryptodatadownload.com/data/coinbase/
Dimitrova, V., Fernández-Martínez, M., Sánchez-Granero, M., & Trinidad Segovia, J. (2019). Some Comments on Bitcoin Market (in)Efficiency. PloS one 14(7), e0219243. https://doi.org/10.1371/journal.pone.0219243
Elliott D. J., & de Lima, L. (2018). Crypto-assets: their future and regulation. Oliver Wyman, October. Retrieved from https://www.atlantafed.org/-/media/documents/news/conferences/2018/1018-financial-stability-implications-of-new-technology/papers/elliott_crypto-assets.pdf
Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417. https://doi.org/10.1111/j.1540-6261.1970.tb00518.x
Fama, E. (1991). Efficient capital markets: II. Journal of Finance, 46(5), 1575-1617. https://doi.org/10.1111/j.1540-6261.1991.tb04636.x
Gabaix X., Gopikrishnan P., Plerou V., & Stanley H. (2003). A theory of power-law distributions in financial market fluctuations. Nature, 423 (6937), 267-270. https://doi.org/10.1038/nature01624
Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross Spectral Methods. Econometrics, 35, 224-238. https://doi.org/10.2307/1912791
Gu, R., Shao, Y., & Wang, Q. (2013). Is the efficiency of stock market correlated with multifractality? an evidence from the shanghai stock market. Physica A: Statistical Mechanics and its Applications, 392(2), 361-370. https://doi.org/10.1016/j.physa.2012.09.008
Hurst, H. E. (1951). The long-term storage capacity of reservoirs. Transaction of the American Society of Civil Engineers, 116, 770-799. https://doi.org/10.1061/TACEAT.0006518
Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, 55(2), 163-172. https://doi.org/10.2307/1403192
Khuntia, S., & Pattanayak, J. (2018). Adaptive Market Hypothesis and Evolving Predictability of Bitcoin. Economics Letters, 167, 26-28. https://doi.org/10.1016/j.econlet.2018.03.005
Mnif, E., Jarboui, A., & Mouakhar K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis. Finance Research Letters, 36, 101647. https://doi.org/10.1016/j.frl.2020.101647
Mnif, E., Salhi, B, Trabelsi, L., & Jarboui, A. (2022). Efficiency and herding analysis in gold-backed cryptocurrencies. Heliyon, 8(12), e11982. https://doi.org/10.1016/j.heliyon.2022.e11982
Noda, A. (2021). On the evolution of cryptocurrency market efficiency. Applied Economics Letters, 28(6), 433-439. https://doi.org/10.1080/13504851.2020.1758617
Peters, E. E. (1994). Fractal Market Analysis- Applying Chaos Theory to Investment and Economics. Wiley.
Takaishi, T. (2018). Statistical properties and multifractality of Bitcoin. Physica A: Statistical Mechanics and Its Applications, 506, 507-519. https://doi.org/10.1016/j.physa.2018.04.046
Tiwari, A. K., Jana, R., Das, D., & Roubaud, D. (2018). Informational Efficiency of Bitcoin–An Extension. Economics Letters, 163, 106-109. https://doi.org/10.1016/j.econlet.2017.12.006
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82. https://doi.org/10.1016/j.econlet.2016.09.019
Van der Auwera, E., Schoutens, W., Giudici, M. P., & Alessi, L. (2020). Futures and Options on Cryptocurrencies. In Financial Risk Management for Cryptocurrencies (pp. 85-95). Springer, Cham.
Vidal-Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019). Weak Efficiency of the Cryptocurrency Market: a Market Portfolio Approach. Applied Economics Letters, 26(19), 1627-1633. https://doi.org/10.1080/13504851.2019.1591583
DOI: https://doi.org/10.22190/FUEO221121005R
Refbacks
- There are currently no refbacks.
© University of Niš, Serbia
Creative Commons License CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)