CONVERSION MODEL OF THE RADIATION-INDUCED INTERFACE-TRAP BUILDUP AND ITS HARDNESS ASSURANCE APPLICATIONS

Vyacheslav Sergeevich Pershenkov

DOI Number
-
First page
557
Last page
570

Abstract


The model, which confirms that the interaction of trapped positive charges ((hydrogenous species)) in the oxide and electrons from the substrate is an important component of radiation-induced interface-trap buildup, is presented. The “one-to-Koi” relationship between the number of trapped holes annealed and number of interface-trap generated is used for prediction of MOS device response in space environment. The model of enhanced low dose rate effect (ELDRS) is proposed. ELDRS conversion model is based on the assumption that there are two types of traps: shallow and deep. The time constants of these traps are different and correspond to interface-trap buildup at high dose rates for shallow traps and at low dose rates for deep traps. The possible physical mechanism of ELDRS effect elimination in the silicon-germanium (SiGe) bipolar transistors is described. The original mechanism of interface-trap buildup saturation based on radiation-induced charge neutralization (RICN) effect is presented.

Full Text:

PDF

References


T.R. Oldham, F.B. McLean, Total ionizing dose effects in MOS oxides and devices, IEEE Trans. Nucl. Sci. NS-50, No.3, 483-499, 2003. DOI: 10.1109/TNS.2003.812927

P.S. Winokur, H.E. Boesch Jr., Interface state generation in radiation-hard oxides, IEEE Trans. on Nuclear Science, vol. 27, № 6, pp. 1647-1650, 1980. DOI: 10.1109/TNS.1980.4331083

F.B. McLean, A framework for understanding radiation-induced interface state in SiO2 MOS structures, IEEE Trans. on Nuclear Science, vol. 27, № 6, pp. 1651-1657, 1980. DOI: 10.1109/TNS.1980.4331084

S.K. Lai, "Interface trap generation in silicon dioxide when electrons are captured by trapped holes", J. Appl. Phys., vol. 54, pp.2540-2546, May 1983. DOI: 10.1063/1.332323

A.V. Sogoyan, S.V. Cherepko, V.S. Pershenkov, Hydrogen-electron model of radiation induced interface trap buildup on oxide-semiconductor interface, Russian Microelectronics, vol. 43, №2, pp. 162-164, 2014.

F.B. McLean, Generic impulse response function for MOS Systems and its application to linear response analysis, IEEE Trans. on Nuclear Science, vol. 35, № 6, pp. 1178-1185, 1988. DOI: 10.1109/23.25436

V.S. Pershenkov, V.V. Belyakov, S.V. Cherepko, I.N. Shvetzov-Sholovky, Three- point method of prediction of MOS device response in space environments, IEEE Trans. Nuclear Science, vol. 40, no.6, pp.1714-1720, 1993. DOI: 10.1109/23.273488

M.P. Baze, R.E. Plaag, A.H. Johnston, A comparison of methods for total dose testing of bulk CMOS and CMOS/SOS devices, IEEE Trans. on Nuclear Science, vol. 36, № 6, pp. 1818-1824, 1990. DOI: 10.1109/23.101195

D.M. Fleetwood, P.S. Winokur, J.R. Schwank, Using laboratory X-ray and Cobalt-60 irradiations to predict CMOS device response in strategic and space environments, IEEE Trans. on Nuclear Science, vol. 35, № 6, pp. 1497-1505, 1988. DOI: 10.1109/23.25487

B.J. Mrstik, R.W. Rendell, Si/SiO2- interface state generation during X-ray irradiation and during post-irradiation exposure to a hydrogen ambient, IEEE Trans. on Nuclear Science, vol. 38, № 6, pp. 1101-1110, 1991. DOI: 10.1109/23.124081

A.J. Lelis, T.R. Oldham, W.M. Delancey, Response of interface traps during high-temperature anneal, IEEE Trans. on Nuclear Science, vol. 38, № 6, pp. 1590-1596, 1991. DOI: 10.1109/23.124150

R. L. Pease, R.D. Schrimpf, D.M. Fleetwood, Recent advances in understanding total-dose effects in bipolar transistors, IEEE Trans. on Nuclear Science, vol. 57, No.4, 1894-1908, 2009. DOI: 10.1109/RADECS.1995.509744

P. J. McWhorter, S. L. Miller, W. M. Miller, "Modeling the Anneal of Radiation-Induced Trapped Holes in a Varying Thermal Environment", IEEE Trans. Nucl. Sci., vol. 37, no.6, p.1683, Dec. 1990. DOI: 10.1109/23.101177

V.V. Emelianov, A.V. Sogoyan, O.V. Meshurov, V.N. Ulimov, V.S. Pershenkov, Modeling the field and thermal dependence of radiation-induced charge annealing in MOS devices. IEEE Trans. on Nucl. Sci., 1996, vol. NS-43, no.6, pp.2572-2578. DOI: 10.1109/23.556838

E.P. Reilly, J. Roberson, Theory of defects in vitrous silicon dioxide, Phys. Rev. B, Vol.27(6), p. 3780 (1981).

V.S. Pershenkov, D.V. Savchenkov, A.S. Bakerenkov, V.N. Ulimov, A.Y. Nikiforov, A.I. Chumakov, A.A. Romanenko, “The Conversion Model of Low Dose Rate Effect in Bipolar Transistors”, RADECS Proc., pp. 286-393, 2009. DOI: 10.1109/RADECS.2009.5994661

A.S. Bakerenkov, V.V. Belyakov, V.S. Pershenkov, A.A. Romanenko, D.V. Savchenkov, V.V. Shurenkov, Extracting the fitting parameters for the conversion model of enhanced low dose rate sensitivity in bipolar devices, Russian Microelectronics, v.42, Issue 1, January, 2013, pp. 48-52. DOI: 10.1134/S1063739712040026

S.C. Witczak, R.D. Schrimpf, K.F. Galloway, D. M. Fleetwood, R.L. Pease, J.M. Puhl, D.M. Schmidt, W.E. Combs, J.S. Suehle, Accelerated tests for simulating low dose rate gain degradation of lateral and substrate pnp bipolar junction transistors. IEEE Trans. on Nucl. Sci., vol. 43, no.6, pp.3151-3160, 1996.

R.K. Freitag, D.B. Brown, Study of low-dose-rate effects on commercial linear bipolar ICs. IEEE Trans. on Nucl. Sci., vol. 45, no.6, pp.2649-2658, 1998.

John D. Cressler, Radiation Effects in SiGe Technology, IEEE transactions on Nuclear Science, vol. 60, № 3, pp. 1992-2014, June 2013. DOI: 10.1109/TNS.2013.2248167

V.S. Pershenkov, S.V. Cherepko, A.V. Sogoyan, V.V. Belyakov, V.N. Ulimov, V.V. Abramov, A.V. Shalnov, V.I. Rusanovsky, Proposed two-level acceptor-donor (AD) center and nature of switching traps in irradiated MOS structures, IEEE transactions on Nuclear Science, vol. 43, №6, pp. 2579-2586, 1996.

M.P. Baze, R.E. Plaag, A.H. Johnston, Dose dependence of interface traps in gate oxides at high levels of total dose, IEEE transactions on Nuclear Science, vol. 36, № 6, pp. 1858-1864, 1989. DOI: 10.1109/23.556839

J. Boch, Y.G. Velo, F. Sainge, N. Roche, R.D. Schrimpf, J. Vaille, L. Dusseau, C. Chatry, E. Lorfevre, R. Ecoffet, A.D. Touboul, "The use of dose rate switching technique to characterize bipolar devices," IEEE transactions on Nuclear Science, vol. 53, №6, pp. 3347-3353, 2009. DOI: 10.1109/TNS.2009.2033686

H.J. Barnaby, R.D. Schrimpf, R.L. Pease, P.Cole, T. Turflinger, J.Kreig, J. Titus, D. Emily, M. Gehlhausen, S.C. Witczak, M.C. Maher, D. Van Nort, " Identification of degradation mechanisms in bipolar linear voltage comparator through correlation of transistor and circuit response," IEEE transactions on Nuclear Science, vol. 46, №6, pp. 1666-1673, 1999. DOI: 10.1109/23.819136

J. M. Benedetto, H.E. Boesch, Jr., F.B. Mclean, Dose and energy dependence of interface trap formation in Cobalt-60 and X-ray environments, IEEE transactions on Nuclear Science, vol. 35, № 6, pp. 1260-1264, 1988. DOI: 10.1109/23.25449

S.M. Sze, Physics of semiconductor devices, New York, Willey, 1981.

V.S. Pershenkov, A.S. Bakerenkov, A.V. Solomatin, V.V. Belyakov, V.V. Shurenkov, Mechanism of the saturation of the radiation induced interface buildup, Applied Mechanics and Materials, Vol. 565, pp. 142-146, 2014. DOI: 10.4028/www.scientific.net/AMM.565.142


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626