### A HIGHLY ACCURATE ALGORITHM FOR COMPUTATION OF COMPLEX-VALUED BESSEL, NEUMANN AND HANKEL FUNCTIONS OF INTEGER ORDER

**DOI Number**

**First page**

**Last page**

#### Abstract

In this paper, a highly accurate algorithm for computation of complex-valued Bessel, Neumann and Hankel functions of integer order is given. The algorithm enables the computation of these functions in the entire complex plane with quadruple precision, which can be reduced to double precision. The complex values of the Bessel and Neumann functions of the zeroth and first order can be computed in a special way for small, medium-sized and large arguments in the first quadrant of the complex plane. The mapping of functions from the first quadrant to the other quadrants is described by simple formulas. Bessel and Neumann functions of higher positive integer order can be computed using forward and backward recurrence relations. Two types of Hankel functions are linear combinations of the Bessel and Neumann functions. Bessel, Neumann and Hankel functions of negative integer order are equal to positive order functions up to the sign.

#### Keywords

#### Full Text:

PDF#### References

S. Vujević and D. Lovrić, "High-accurate numerical computation of internal impedance of cylindrical conductors for complex arguments of arbitrary magnitude", IEEE Trans. Electromagn. Compat., vol. 56, no. 6, pp. 1431–1438, December 2014.

D. Lovrić and S. Vujević, "Accurate computation of internal impedance of two-layer cylindrical conductors for arguments of arbitrary magnitude", IEEE Trans. Electromagn. Compat., vol. 60, no. 2, pp. 347–353, April 2018.

J. A. B. Faria, "A Matrix Approach for the Evaluation of the Internal Impedance of Multilayered Cylindrical Structures", PIER B, vol. 28, pp. 351–367, 2011.

K. Kubiczek and M. Kampik, "Highly Accurate and Numerically Stable Matrix Computations of the Internal Impedance of Multilayer Cylindrical Conductors", IEEE Trans. Electromagn. Compat., vol. 62, no. 1, pp. 204–211, February 2020.

K. Kubiczek, "Computation of the Characteristic Parameters of Coaxial Waveguides Used in Precision Sensors", Sensors, vol. 23, 2324, February 2023.

J. Acero, C. Carretero, I. Lope, R. Alonso, J. M. Burdío, "Analytical solution of the induced currents in multilayer cylindrical conductors under external electromagnetic sources", Applied Mathematical Modelling, vol. 40, Issues 23–24, pp. 10667–10678, December 2016.

K. Kubiczek and M. Kampik, "Fast and Numerically Stable Analytical Computations for the Power Induced in Cylindrical Multilayered Conductors Under External Magnetic Fields", IEEE Trans. Electromagn. Compat., vol. 65, no. 1, pp. 292–299, February 2023.

G. S. Liodakis, T. N. Kapetanakis, M. P. Ioannidou, A. T. Baklezos, N. S. Petrakis, C. D. Nikolopoulos, and I. O. Vardiambasis, "Electromagnetic Wave Scattering by a Multiple Core Model of Composite Cylindrical Wires at Oblique Incidence", Appl. Sci., vol. 12, 10172, October 2022.

R. Gordon, A. Choudhury, and T. Lu, "Gap plasmon mode of eccentric coaxial metal waveguide", Opt. Express, vol. 17, no. 17, pp. 5311–5320, March 2009.

S. Vujević and I. Krolo, "Computation of spectral-domain Green's functions of the infinitesimal current source in a planar multilayer medium", PIER B, vol. 100, pp. 55–71, 2023.

E. Zlatanović, V. Šešov, D. Lukić and Z. Bonić, "Mathematical interpretation of seismic wave scattering and refraction on tunnel structures of circular cross-section", Facta Universitatis, Series: Architecture and Civil Engineering, vol. 18, no. 3, pp. 241‒260, 2020.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D.C., 1964, pp. 355–389.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Elsevier Academic Press, Amsterdam, 2007.

S. Zhang and J. Jin, Computation of Special Functions. John Wiley & Sons, New York, 1996, pp. 126–201.

D. E. Amos, A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order. Sandia National Laboratories, Albuquerque, New Mexico, 1985.

D. E. Amos, "Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order", ACM Trans. Math. Software, vol. 12, no. 3, pp. 265–273, September 1986.

J. P. Coleman and A. J. Monaghan, "Chebyshev expansions for the Bessel function Jn(z) in the complex plane", Mathematics of Computation, vol. 40, no. 161, pp.343–366, January 1983.

J. P. Coleman, "A Fortran subroutine for the Bessel function Jn(x) of order 0 to 10", Computer Physics Communications, vol. 21, pp. 109–118, 1980.

C. F. du Toit, "The numerical computation of Bessel functions of the first and second kind for integer orders and complex arguments", IEEE Trans. Antennas Propagat., vol. 38, no. 9, pp. 1341–1349, September 1990.

C. F. du Toit, "Evaluation of some algorithms and programs for the computation of integer-order Bessel functions of the first and second kind with complex arguments", IEEE Antennas Propagat. Magaz., vol. 35, no. 3, pp. 19–25, June 1993.

C. F. du Toit, "Bessel functions Jn(z) and Yn(z) of integer order and complex argument", Computer Physics Communications, vol. 78, pp. 181–189, 1993.

M. Goldstein and R. M. Thaler, "Recurrence techniques for the calculation of Bessel functions", Mathematics of Computation, vol. 13, no. 66, pp. 102–108, 1959.

F. W. J. Olver, "Error analysis of Miller's recurrence algorithm", Mathematics of Computation, vol. 18, no. 85, pp. 65–74, 1964.

W. Gautschi, "Computational aspects of three-term recurrence relations", SIAM Review, vol. 9, no. 1, pp. 24–82, 1967.

### Refbacks

- There are currently no refbacks.

ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626