HYBRID AI MODEL FOR PREDICTING AIR QUALITY AND RICE CROP YIELD USING SATELLITE DATA AND ENVIRONMENTAL VARIABLES
Abstract
Keywords
Full Text:
PDFReferences
R. Huang, R. Hu and H. Chen, "A Novel Hybrid Model for Air Quality Prediction via Dimension Reduction and Error Correction Techniques", Environ. Monit. Assess., vol.197, p. 96, 2025.
M. Suman, "Air Quality Indices: A Review of Methods to Interpret Air Quality Status", Mater. Today, vol. 34, no. 3, pp.863-868, 2020.
Kanchan, A. K. Gorai and P. Goyal, "A Review on Air Quality Indexing System", Asian J. Atmos. Environ., vol. 9, pp. 101-113, 2015.
P. K. Meena and D. V. Singh, "Air Quality Monitoring and Pollution Control Technologies", Int. J. Multidiscip. Res. Sci. Eng. Technol., vol. 7, pp.4409-4426, 2024.
L. S. Pereira, "Water, Agriculture and Food: Challenges and Issues", Water Resour. Manag., vol. 31, 2017, pp. 2985-2999.
A. Singh and A. Gupta, "Food Security Through Sustainable Agriculture: A Prospective Study in the Indian Context", In Sustainability and Health Informatics: A Systems Approach to Address the Climate Action Induced Global Challenge, Singapore: Springer Nature, 2024, pp. 155-182.
H. Kaur, "Air Pollution and Greenhouse Gases Emissions: Implications in Food Production and Food Security", in Greenhouse Gases: Sources, Sinks and Mitigation, Singapore: Springer, 2022, pp. 107-133.
D. Tong, R. Mathur, K. Schere, D. Kang and S. Yu, "The Use of Air Quality Forecasts to Assess Impacts of Air Pollution on Crops: Methodology and Case Study", Atmos. Environ., vol. 41, pp. 8772-8784, 2007.
W. Wei and Z. Wang, "Impact of Industrial Air Pollution on Agricultural Production", Atmosphere, vol. 12, pp. 1-15, 2021.
M. M. Hasan, M. A. Rahman, M. Skalicky, N. M. Alabdallah, M. Waseem, M. S. Jahan, G. J., Ahammed, M. M. El-Mogy, A. A. El-Yazied, M. F. Ibrahim and X. W. Fang, "Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants", Int. J. Mol. Sci., vol. 22. pp. 12, 2021.
J. K. Lee, D. Y. Kim, S. H. Park, S. Y. Woo, H. Nie and S. H. Kim, "Particulate Matter (PM) Adsorption and Leaf Characteristics of Ornamental Sweet Potato (Ipomoea batatas L.) Cultivars and Two Common Indoor Plants (Hedera helix L. and Epipremnum aureum Lindl. & Andre)", Horticulturae, vol. 8, p. 1, 2022.
M. Wang and W. Liao, "Carbon Monoxide as a Signaling Molecule in Plants", Front. Plant Sci., vol. 7, p. 572, 2016.
M. A. Chakwanda, P. T. Chenge, N. Baloyi, G. L. Tamburayi, M. Muchangana, P. Jarbah, A. Rera and J. P. Sahoo, "Green Revolution: The Catalyst for Agricultural Transformation", Vigyan Varta: Int. J. E-Magazine Sci. Enthus., vol. 5, pp. 294-302, 2024.
Giovanni Satellite Data Center, NASA. [Online] Available at: https://www.earthdata.nasa.gov/technology/giovanni
World Health Organization, "Asia and the Pacific Regional Overview of Food Security and Nutrition 2020: Maternal and Child Diets at the Heart of Improving Nutrition", Food & Agriculture Org., vol. 2020, 2021.
L. Zhoul, M. Chenl and Q. Ni, "A Hybrid Prophet-LSTM Model for Prediction of Air Quality Index", In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence, 2020, pp. 595-601.
K. K. R. Samal, K. S. Babu, S. K. Das and A. Acharaya, "Time Series Based Air Pollution Forecasting Using SARIMA and Prophet Model", In Proceedings of the International Conference on Information Technology And Computer Communications, 2019, pp. 80-85.
A. H. Setianingrum, N. Anggraini and M. F. D. Ikram, "Prophet Model Performance Analysis for Jakarta Air Quality Forecasting", In Proceedings of the 10th International Conference on Cyber and IT Service Management (CITSM), 2022, pp. 1-7.
J. Shen, D. Valagolam and S. McCalla, "Prophet Forecasting Model: A Machine Learning Approach to Predict the Concentration of Air Pollutants (PM2. 5, PM10, O3, NO2, SO2, CO) in Seoul, South Korea", Peer J., vol. 8, p. e9961, 2020.
B. Ji, Y. Sun, S. Yang and J. Wan, "Artificial Neural Networks for Rice Yield Prediction in Mountainous Regions", J. Agric. Sci., vol. 145, pp. 249-261, 2007.
Chu, Zheng, and Jiong Yu. "An End-To-End Model for Rice Yield Prediction Using Deep Learning Fusion", Comput. Electron. Agric., vol. 174, p. 105471, 2020.
S. S. Dahikar and S. V. Rode, "Agricultural Crop Yield Prediction Using Artificial Neural Network Approach", Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng., vol. 2, pp. 683-686, 2014.
P. Nevavuori, N. Narra and T. Lipping, "Crop Yield Prediction with Deep Convolutional Neural Networks", Comput. Electron. Agric., vol. 163, p. 104859, 2019.
S. Pandya, T. R. Gadekallu, P. K. R. Maddikunta and R. Sharma, "A Study of the Impacts of Air Pollution on the Agricultural Community and Yield Crops (Indian Context)", Sustainability, vol. 14, p. 13098, 2022.
H. Jethva, O. Torres, R. D. Field, A. Lyapustin, R. Gautam and V. Kayetha, "Connecting Crop Productivity, Residue Fires, and Air Quality Over Northern India", Sci. Rep., vol. 9, p. 16594, 2019.
K. Ghosh, A. Singh, U. C. Mohanty, N. Acharya, R. K. Pal, K. K. Singh and S. Pasupalak, "Development of a Rice Yield Prediction System Over Bhubaneswar, India: Combination Of Extended Range Forecast and CERES‐Rice Model", Meteorol. Appl., vol. 22, pp. 525-533, 2015.
B. S. Dhekale, M. M. Nageswararao, A. Nair, U. C. Mohanty, D. K. Swain, K. K. Singh and T. Arunbabu, "Prediction of Kharif Rice Yield at Kharagpur Using Disaggregated Extended Range Rainfall Forecasts", Theor. Appl. Climatol., vol. 133, pp. 1075-1091, 2018.
S. Mishra, "Prediction of Climatic Variability Effects on Rice Yield of Coastal Odisha using Machine Learning Technique, Odisha", PhD Thesis, 2020.
V. Terzieva, S. Ilchev and K. Todorova, "The Role of Internet of Things in Smart Education.", IFAC-Papers On Line, vol. 55, pp. 108-113, 2022.
R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle and K. Wargan, "The Modern-Era Retrospective Analysis for Research and Applications", J. Clim., vol. 30, pp. 5419-5454, 2017.
FAOSTAT, FAO. "Food And Agriculture Organization Corporate Statistical Database." FAO Online Database, 2022. [Online] Available at: http://www. fao. org/faostat/en/# data
S. A. Horn and P. K. Dasgupta, "The Air Quality Index (AQI) in Historical and Analytical Perspective a Tutorial Review", Talanta, vol. 267, pp. 1-53, 2024.
E. B. Wijayanti, D. R. I. M. Setiadi and B. H. Setyoko, "Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting", J. Comput. Theor. Appl., vol. 1, no. 3, pp. 299-310, 2024.
D. R. I. M. Setiadi, A. Susanto, K. Nugroho, A. R. Muslikh, A. A. Ojugo and H.-S. Gan, "Rice Yield Forecasting Using Hybrid Quantum Deep Learning Model", Computers, vol. 13, no. 8, p. 191, 2024.
M. Djordjević, B. Jovičić, S. Marković, V. Paunović and D. Danković, "A Smart Data Logger System Based on Sensor and Internet of Things Technology as Part of the Smart Faculty", Journal of Ambient Intelligence and Smart Environments, vol. 12, pp. 359-373, 2020.
Refbacks
- There are currently no refbacks.
ISSN: 0353-3670 (Print)
ISSN: 2217-5997 (Online)
COBISS.SR-ID 12826626