P-CHANNEL MOSFET AS A SENSOR AND DOSIMETER OF IONIZING RADIATION
Abstract
This paper presented a study of MOSFETs as a sensor and dosimeter of ionizing radiation. The electrical signal used as a dosimetric parameter is the threshold voltage. The functionality of these components is based on radiation-induced ionization in SiO2, which results in increase of positive charge trapped in the SiO2 and interface traps at Si- SiO2, leads to change in threshold voltage. The first part of the paper deals with analysis of defect precursors created by ionizing radiation, responsible for creation of fixed and switching traps, as well as most important techniques for their separation. Afterwards, the results for sensitive p-channel MOSFETs (RADFETs) are presented, following with results for commercially available MOSFETs applications as a sensors of ionizing radiation.
Keywords
Full Text:
PDFReferences
W. Poch and A.G. Holmes-Siedle, „The mosimeter- a new instrument for measuring radiation dose“, RCA Eng., vol. 16, pp. 56-59, 1970.
A.G. Holmes-Siedle, „The space charge dosimeter-general principles of a new method of radiation dosimetry“, Nucl. Instrm. Methods, vol. 121, pp. 169-179, 1974.
L. Adams and A. Holmes-Siedle, „The development of MOS dosimetry unit for use in space“, IEEE Trans. Nucl. Sci., vol. 18, pp. 1607-1612, 1978.
R.R. Price, C. Benson an K. Rodgers, „Development of RadFET linear array for intracavitary in vivo dosimetry in external radiotherapy and brachyterapy“, IEEE Tran. Nucl. Sci., vol. 51, pp. 1420-1426, 2004.
R. Ramasechum, K.S. Kulli, T.J. Zhang, B. Norling, A. Hallil and M. Islam, „Performance characteristics of a micro MOSFET as an in vivo dosimeter in radiation therapy“, Phys. Med. Biol., 49, pp. 4031-4048, 2004.
G. Tarr, K. Shortt, Y. Wang and I. Thomson, „A sensitive temperature-compensated, zero-bias floating gate MOSFET dosimeter“, IEEE Trans. Nucl. Sci., vol. 51, pp. 1277-1282, 2004.
M.C. Lavallee, L. Gingras and B. Luc, „Energy and interated dose dependence of MOSFET dosimeter sensitivity for irradiation eneries between 30 kV and 60Co“, Med. Phys., vol. 33, pp. 3683-3689, 2006.
R. Kohuo, T. Nishio, T. Miyagishi, E. Hirano, K. Hotta, M. Kowashima and T. Ogino, „Experimental evaualation of a MOSFET dosimeter for proton dose measurements“, Phys. Med. Biol., vol. 51, pp. 6077-6086, 2006.
A. Holmes-Siedle and L. Adams, „RADFETs: a review of the use of metal-oxide silicon devices as integrating dosimeters“, Rad. Phys. Chem., vol. 28, 224-235, 1986.
A. Kelleher, N. McDonnell, B. O'Neill, W. Lane, L. Adams, „Investigation into the re-use of pMOS dosimeter“, IEEE Trans. Nucl. Sci., vol. 41, pp. 445-451, 1994.
L.Z. Scheick, P.J. McNulty and D.R. Roth, „Dosimetry based on the erasure of floating gates in natural radiation environments“, IEEE Trans. Nucl. Sci., vol. 45, pp. 2681-2688, 1998.
K. Kay, E. Mullen, W. Stapor, R. Circle and P. McDonald, „GRRES dosimetry results and comparison using the space radiation dosimeter and p-channel MOS disieteter“, IEEE Tran. Nucl. Sci., vol. 39, pp. 1846-1850, 1992.
A. Faigon, J. Lipovetzky, E. Redin and G. Kruscenski, „Expresion of measurement range of MOS dosimeters using radiation induced charge neutralization“, IEEE Trans. Nucl. Sci., vol. 55, pp. 2141-2147, 2008.
B. O'Connell, C. Connely, C. McCarthy, J. Doyle, W. Lane and L. Adams, „Electrical performance and irradiation sensitivity of stacked pMOS dosimeters under bulkbias control“, IEEE Trans. Nucl. Sci., vol. 45, pp. 2689-2694, 1988.
G. Sarrabayrouse, Buchdahl, V. Poliscuk and S. Siskos, „Stacked-MOS ionizing radiation dosimeters: Potentials and limitations, Radiat. Phys. Chem., vol. 71, pp. 737-739, 2004.
R.C. Hughes, D. Huffman, J.V. Snelling, T.E. Zipperian, A.J. Ricoo and C.A. Kelsey, „Miniature radiation dosimeter for in vivo radiation measuremnts“, Int. Rad. Oncol. Biol. Phys., vol. 14, pp. 963-967, 1988.
D.J. Gladstone, X.Q. Lu. J.L. Humm, H.F. Bowman and L.M. Chin, „A miniature MOSFET radiation probe“, Med. Phys., vol. 21, pp. 1721-1728, 1994.
G.I. Kaplan, A.B. Rosenfeld, B.J. Allen, J.T. Booth, M.G. Carolan and A. Holmes-siedle, „A special resolution by MOSFET dosimetry of an x-ray microbeam“, Med. Phys., vol. 27, pp. 239-244, 2000.
G. Sarabayrouse and V. Polischuk, „MOS ionizing radiation dosimeters: from low to high dose measurement“, Radiat. Phys. Chem., vol. 61, pp. 511-513, 2001.
A. Jaksić, G. Ristić, M. Pejović, A. Mohammadzadeh, C. Sudre and W. Lane, „Gamma-ray irradiation and post-irradation response of high dose range RADFETs“, IEEE Trans. Nucl. Sci., vol. 49, pp. pp. 1356-1363, 2002.
R.A. Price, „Towards and optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials“, Radiation Protection Dosimetry., vol. 115, pp. 386-390, 2005.
M.M. Pejović, M.M. Pejović, A.B. Jakšić, K.Dj. Stanković and A.A. Marković, “Successive gamma-ray irradiation and Corresponding post-irradiation annealing of PMOS dosimeters”, Nucl. Technol. and Radiat. Protection, vol. 27, pp. 341-345, 2012.
M.M. Pejović, M.M. Pejović and A.B. Jakšić, „Contribution of fixed oxide traps to sensitivity of PMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature”, Sensors and Actuators A, vol. 174, pp. 85-90, 2012.
S.Alshaikh, M. Carolan, M. Petasecca, M. Lerch and A.B. Metealfe, „Direct and pulsed current annealing of p-MOSFET based dosimeter, the MOSkin“, Australs Phys. Eng. Sci. Med., vol. 37, pp. 311-319, 2014.
G-Wen Luo, Qi. Z.-Y. Deng, A. Rosenfeld and W- X?, „Investigated of a pulsed current annealing method in reusing MOSFET dosimeters for in vivo IMRT dosimetry“, Med. Phys., vol. 41, 0511710, 2014.
G. Ristić, S. Golubović and M. Pejović, „pMOS dosimeter with two-layer gate oxide operated at zero negative bias”, Electr. Lett., vol. 30, pp. 295-296, 1994.
G. Ristić, A. Jalšić, M. Pejović, “pMOS dosimetric transistors with two-layer gate oxide”, Sensors and Actuators A, vol. 63, pp. 129-134, 1997.
G. Sarrabayrouse and F. Gessinn, “Thick oxide MOS trnsistors for ionizing radiation dose measurement”, radioprotection, vol. 29, pp. 557-572, 1994.
A. Haran, A. Jakšić, N. Rafaeli, A. Elyahu, D. David and J. Barak, IEEE tran. Nucl. Sci., vol. 51, 2917-2921, 2004.
T.P. Ma and P.V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits, New York: Willey and Sons, 1989.
G. S. Ristić, “Influence of ionizing radiation and hot carrier injection on metal-oxide-semiconductor transistors”, J. Phys. D: Appl. Phys., vol. 41, 023001 (19 pp), 2008.
M. Pejović, P. Osmokrović, M. Pejović and K. Stanković, “Influence of ionizing radiation and hot carrier injection on metal-oxide-semiconductor transistors”. In M. Nenoi (Ed), Current Topic in Radiation Research. INTECH. Institute for New Technologies, Maastricht (NL), Chapter 33, . OCLC: 846871029, 2012.
C.T. Sah, “Origin of interface states and oxide charges generated by ionizing radiation”, IEEE Tran. Nucl. Sci., vol. 23, pp. 1563-1567, 1976.
D.L. Griscom, “Optical properties and structure of defects in silica glass”, J. Ceram. Soc. Japan, vol. 99, pp. 923-941, 1991.
R. Helms and E.H. Poindexter, “The silicon-silicon-dioxide system: its microstructure and imperfections”, Rep. Prog. Phys., vol. 57, pp. 791-852, 1994.
R.A. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz”, J. Appl. Phys., vol. 27, pp. 1376-1381, 1959.
H.E. Boesch, Jr, F.B. McLean, J.M. McGarrity and G.A. Ausman, Jr,”Hole transport and charge relaxation in irradiated SiO2 MOS capacitors”, IEEE Trans. Nucl. Sci., vol. 22, pp. 2163-2167, 1975.
W.L. Warren and P.M. Lenahan, “A comparison of positive charge generation in high field stressing and ionizing radiation on MOS structure”, IEEE Trans. Nucl. Sci., vol. 34, pp. 1355-1358, 1987.
L.P. Trombetta, F.J. Feigl and R.J. Zeto, “Positive charge generation in metal-oxide-semiconductor capacitors, J. Appl. Phys., vol. 69, pp. 2512-2521, 1991.
R.K. Freitag, D.B. Brown and C.M. Dosier, “Experimental evidence of two species of radiation induced trapped positive charge”, IEEE Trans. Nucl. Sci., vol. 40, pp. 1316-1322, 1993.
R.K. Freitag, D.B. Brown and C.M. Doser, “Evidence for two types of radiation-induced trapped positive charge”, IEEE Trans. Nucl. Sci., vol. 41, pp. 1828-1834, 1994.
J.E. Conley, P.M. Lenahan, A.H. Lelis and T.R. Oldham, “Electron spin resonance evidence for the structure of a switching oxide trap: long term structural charge at silicon dangling bond sites in SiO2”, Appl. Phys. Lett., vol. 67, pp. 2179-2181, 1995.
J.F. Conley, P.M. Lenahan, A.J. Lelis and T.R. Oldham, “Electron spin resonance evidence that center can behave as switching oxide trap”, IEEE Trans. Nucl. Sci., vol. 42, pp. 1744-1749, 1995.
D.A. Buchanan, A.D. Marwick, D.J. DiMaria and L. Dori, “Hot-electron-induced hydrogen redistribution and defect generation in metal-oxide-semiconductors”, J. Appl. Phys., vol. 76, pp. 3595-3605, 1994.
D.J. DiMaria, D.A. Buchanan, J.H. Stathis and R.E. Stahlbush, “Interface states induced by the presence of trapped holes near the silicon-silicon-dioxide interface”, J. Appl. Phys., vol. 77, pp. 2032-2040, 1995.
S.K. Lai, “Two carrier nature of interface-state generation in hole trapping and radiation damage”, Appl. Phys. Lett., vol. 39, pp. 58-60, 1981.
S.K. Lai, Interface trap generation in silicon dioxide when electrons are captured by trapped holes”, J. Appl. Phys., vol. 54, pp. 2540-2546, 1983.
S.T. Chang, J.K. Wu and S.A. Lyon, “Amphoterical defects at Si-SiO2”, Appl. Phys. Lett., vol. 52, pp. 622-624, 1986.
S.J. Wang, J.M. Sung and S.A. Lyon, “Relationship between hole trapping and interface state generation in metal-oxide-silicon structures, Appl. Phys. Lett., vol. 52, pp. 1431-1433, 1986.
F.B. McLean, “A framework for understanding radiation-induced interface states in SiO2 MOS structures, IEEE Trans. Nucl. Sci., vol. 27, pp. 1651-1657, 1980.
N.S. Saks, C.M. Dozier and D.B. Brown, ”Time dependence of interface trap formation in MOSFETs following pulsed irradiation”, IEEE Trans. Nucl. Sci., vol. 35, no. 6, pp. 1168-1177, 1988.
N.S. Saks and D.B. Brown, “Interface trap formation via the two-stage H+ process”, IEEE Tran. Nucl. Sci., vol. 36, no. 6, pp. 1848-1857, 1989.
D.L. Griscom, D.B. Brown and N.S. Saks, Nature of radiation-induced point deffcts in amorphous SiO2 and their role in SiO2-on-Si structure,The Physics and Chemistry of SiO2 and Si- SiO2 interface, ed C.R. Holmes and B.E. Deal, Ney-York, Plenum, 1988.
K.L. Brower and S.M. Mayers, “Chemsical kinetics of hydrogen and (111) Si- SiO2 interface defect”, Appl. Phys. Lett., vol. 57, pp. 162-164, 1990.
J.H. Stathis and E. Cartier, “Atomic hydrogen reactions with Pb centers at the (100) Si- SiO2 interface”, Phys. Rev. Lett., vol. 72, pp. 2745-2748, 1994.
E.H. Poindexter, “Chemical reactions of hydrogenous species in the Si- SiO2 system”, J. Non. Cryst. Solids, vol. 187, pp. 257-263, 1995.
R.E. Stahlbush, A.H. Edwards, D.L. Griscom and B.J. Mrstik, “Post-irradiation cracking of H2 and formation of interface states in irradiated metal-oxide-semiconductor field-effect transistors”, J. Appl. Phys., vol. 73, pp. 658-667, 1993.
M.M. Pejović, “Physico-chemical processes in vertical-double-diffusion metal-oxide-semiconductor field effect transistors induced by gamma-ray irradiation and post-irradiation annealing”, Facta Universitatis, Series: Physics, Chemistry and Technology, vol. 13, pp. 13-27, 2015.
McWhorter and P.S. Winocur, “Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide semiconductor transistors”, Appl. Phys. Lett., vol. 48, pp. 133-135, 1986.
M.V. Fischetti, R. Gastaldi, F. Maggoni and A. Madelli, “Slow and fasdt states induced by hot electrons at Si- SiO2 inteface”, J. Appl. Phys., vol. 53, pp. 3136-3144, 1982.
L.P. Trombetta, F.J. Feigl and R.J. Zeto, “Positive charge generation in metal-oxide-semiconductor capacitors”, J. Appl. Phys., vol. 69, pp. 2512-2521, 1991.
R.K. Freitag, D.B. Brown and C.M. Dozier, “Experimental evidence of two species of radiation induced trapped positive charge”, IEEE Tran. Nucl. Sci., vol. 40, pp. 1316-1322, 1993.
A.J. Lelis. and T.R. Oldham, “Time dependence of switching oxide traps”, IEEE Tran. Nucl. Sci., vol. 41, pp. 1835-1843, 1994.
D.M. Fleetwood, “Border traps in MOS devices”, IEEE Tran. Nucl. Sci., vol. 39, 269-271, 1992.
V. Davidovic, Ph. D., University of Nis, 2010.
S.M. Sze, Physics of Semiconductor Devices, Ney York, Wiley, 1981.
A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects, 2nd ed., New York: Oxford University Press, 2002.
M.A.B. Eliot, “The use charge pumping currents to measure surface state densities in MOS transistors”, Solid-State Electron., vol. 19, pp. 241-247, 1986.
J.S. Brugler and P.G. Jespres, “Charge pumping in MOS devices”, IEEE Trans. Electron DEv. Lett., vol. 13, pp. 627-629, 1969.
G. Groeseneken, H.E. Maes, N. Baltron and R.F. De Keersmaeeker, “A reliable approch to charge-pumping measurements in MOS transistors”, IEEE Trans. Electron Dev., vol. 31, pp. 42-53, 1984.
R.E. Paulsen, R.R. Siergiej, M.L. French andM.H. White, “Observation of near-interface oxide traps with the change pumping technique”, IEEE Electron Dev. Lett., vol. 13, pp. 627-629, 1992.
D. Habaš, Z. Prijić, D. Pantić and N. Stojadinović, “Charge-pumping characterization of SiO2/Si interface virgin and irradiated power VDMOSFETs”, IEEE Trans. Electron Dev., vol. 43, pp. 2197-2208, 1996.
S.C. Witezak, K.F. Gallawoy, R.D. Schrimpf and J.R. Brews, G. Prevost, “ The determination of Si- SiO2 interface trap density in irradiated four-terminal VDMOSFETs using charge pumping”, IEEE Trans. Nucl. Sci., vol. 43, pp. 2558-2564, 1996.
G.S. Ristić, M.M. Pejović and A.B. Jakšić, „Comparison between post-irradiation annealing and post-high electrical field stress annealing of n-channel power VDMOSFETs”, Appl. Surf. Sci., vol. 220, pp. 181-185, 2003.
A. Kelleher, M. O’Sullivan, J. Rayn, B. O’Neal and W. Lane, “Development of the radiation sensitivity of pMOS dosimeters”, IEEE Tran. Nucl. Sci., vol. 39, pp. 342-346, 1992.
I. Thomson, “Direct reading dosimeters”, European Patent Office, Ep0471957A2, 02/07/1991.
S. Best, A. Ralson and N. Suchowerska, “Clinical application of the one dose patient dosimetry system for total body irradistion”, Phys. in Medic. and Biology, vol. 50, pp. 5909-5919, 2005.
M.M. Pejović, “The gamma-ray irradiation sensitivity and dosimetric information instability of RADFET dosimeter”, Nucl. Technol. and Radiat. Protection, vol. 28, pp. 415-421, 2013.
I. Thomson, R.E. Thomson and L. P. Brendt, “Radiation dosimetry with MOS sensors”, Radiation Protec. Dosimetry, vol. 6, pp. 121-124, 1983.
L.S. August, R.R. Circle and J.C. Ritter, “An MOS dosimeter for use in space”, IEEE Tran. Nucl. Sci., vol. 30, pp. 508-511, 1983.
L.S. August, “Estimating and reducing errors in MOS dosimeters caused by exposure to different radiations”, IEEE Trans. Nucl. Sci., vol. 29, no. 6, pp. 2000-2003, 1982.
G. Sarrabayrouse, A. Bellaouar and P. Rossel, “Electrical properties of MOS radiation dosimeters”, Revue Phys. Appl., vol. 21, pp. 283-287, 1986.
A. Ballaouar, G. Sarrabayrouse and P. Rassel, “MOS transistor for ionizing radiation dosimetry”, Proc. 13th Yugoslav Conf. on Mictoelectronics (MIEL 85), Ljubljana, pp. 161-168, 1985.
L. Adams and A. Holmes-Siedle, “The development of MOS dosimetry unit for use in space”, IEEE Trans. Nucl. Sci., vol. 18, pp. 1607-1612, 1978.
L. Adams, E.J. Daly, R. Harboe-Sorensen, A.G. Holmes-Siedle, A.K. Ward and A.A. Bull, “Measurements of SEU and total dose in geostationary orbit under normal and solar frame conditions”, IEEE Trans. Nucl. Sci., vol. 38, pp. 1686-1692, 1991.
J.S. Leffler, S.R. Lendgren and A.G. Holmes-Siedle, “The aplications of RADFET dosimetry to equipment radiation qualification and monitoring”, Trans. of the American Society, vol. 60, pp. 535-536, 1989.
A.G. Holmes-Siedle, L. Adams, J.S. Leffler and S.R. Lingren, ”The RADFET system for real-time dosimetry in nuclear facilities”, 7th Annual ASTM-Euratom Symp. on Reac. Dosimetry, Strasbourg, pp. 851-859, 1990.
G. Ristić, S. Golubović and M. Pejović, “P-channel metal-oxide-semiconductor detector fading dependencies on gate bias and oxide thickness”, Appl. Phys. Lett., vol. 66, pp. 88-89, 1995.
G. Ristić, S. Golubović and M. Pejović, “Sensitivity and fading of pMOS dosimeters with thick gate oxide”, Sensors and Actuators A, vol. 51, pp. 153-158, 1996.
Z. Savić, S. Stanković, M. Kovačević and M. Petrović, „Energy dependence of pMOS dosimeters“, Radiation Protect. Dosimetry, vol. 64, pp. 205-211, 1996.
M.M. Pejović and M.M. Pejović, „Radiation-sensitive field effect transistor response to gamma-ray irradiation“, Nuclear Technol. and Radiat. Protection, vol. 26, pp. 25-31, 2011.
M.M. Pejović, „Dose response, radiation sensitivity and signal fading of p-channal MOSFETs (RADFRTs) irradiated up to 50 Gy with 60Co”, Appl. Radiation and Isotopes, vol. 104, 100-115, 2015.
S. Pejović, P. Bošnjaković, O. Ciraj-Bjelac and M.M. Pejović, “Characteristics of a pMOSFET suitable for use in radiotherapy”, Appl. Radiation and Isotopes, vol. 77, pp. 44-49, 2013.
G. Ristić, A. Jakšić and M. Pejović, „pMOS dosimetric transistors with two-layer gate oxide”, Sensors and Actuators A, vol. 63, pp. 129-134, 1997.
M.M. Pejović, S.M. Pejović, D. Stojanov and O. Ciraj-Bjelac, “Sensitivity of RADFETs for gamma and X-ray doses used in medicine”, Nuclear Technol. and Radiat. Protection, vol. 29, pp. 179-185, 2014.
M. Pejović, O. Ciraj-Bjelac, M. Kovačević, Z. Rajović and G. Ilić, “Sensitivity of P-channel MOSFET to X- and gamma-ray irradiation”, International Journal of Photoenergy, vol. 2013, pp. 1-6, 2013.
C. Ehringfeld, S. Schmid, K. Poljanc, Ch. Kirisits, H. Aiginger and D. Georg, “Application of commercial MOSFET detectors in vivo dosimetry in the therapic X-ray range from 80 kV to 250 kV, Physics in Medicine and Biology, vol. 50, pp. 289-303, 2005.
S.M. Pejović, M.M. Pejović, D. Stojanov and O. Ciraj-Bjelac, “Sensitivity and fading of PMOS dosimeters irradiated with X-ray radiation doses from 1 to 100 cGy”, Radiation Protect. Dosimetry, vol. 168, pp. 33-39, 2016.
P.J. McWhorter, S.L. Miller and W.M. Miller, “Modeling the anneal of radiation-induced traps holes in a varying thermal environment”, IEEE Trans. Nucl. Sci., vol. 37, pp. 16821689, 1990.
M.M. Pejović, M.M. Pejović and A.B. Jakšić, “Response of pMOS dosimeters on gamma-ray irradiation during its re-use”, Radiation Protection Dosimetry, vol. 155, pp. 394-403, 2013.
J. Aristu, F. Calvo, R. Martinez, J. Dubois, M. Santors, S. Fisher, et al., “Lung cancer, in; Intraoperative Irradiation Techniques and Results, 437-453, 1999.
L.J. Asensio, M.A. Carvajal, J.A. Lopez-Villaneva, M. Vilches, A.M. Lallena and A.J. Palma, „Evaluation of a low-cost commercial mosfet as radiation dosimeter“, Sensors and Actuators A, vol. 125, pp. 288-295, 2006.
M.S. martinez-Garcia, F. Simancos, A.J. palma, A.M. Lallena, J. Banqueri and M.A. Carvajal, „ General purpose MOSFETs for the dosimetry of electron beams used in intra-operative radiotherapy“, Sensors and Actuators A, vol. 210, pp. 175-181, 2014.
M.M. Pejović, „Application of p-channel power VDMOSFET as a high radiation dose sensor”, IEEE Trans. Nucl. Sci., vol. 62, pp. 1905-1910, 2015.
Refbacks
- There are currently no refbacks.
ISSN: 0353-3670 (Print)
ISSN: 2217-5997 (Online)
COBISS.SR-ID 12826626