HIGH-ACCURACY QUASISTATIC NUMERICAL MODEL FOR BODIES OF REVOLUTION TAILORED FOR RF MEASUREMENTS OF DIELECTRIC PARAMETERS

Antonije Djordjevic, Dragan Olcan, Jovana Petrovic, Nina Obradovic, Suzana Filipovic

DOI Number
https://doi.org/10.2298/FUEE2101141D
First page
141
Last page
156

Abstract


We have developed rotationally symmetrical coaxial chambers for measurements of dielectric parameters of disk-shaped samples, in the frequency range from 1 MHz to several hundred MHz. The reflection coefficient of the chamber is measured and the dielectric parameters are hence extracted utilizing a high-accuracy quasistatic numerical model of the chamber and the sample. We present this model, which is based on the method-of-moments solution of a set of integral equations for composite metallic and dielectric bodies. The equations are tailored to bodies of revolution. The model is efficient and accurate so that the major contribution of the measurement uncertainty comes from the measurement hardware.


Keywords

dielectric measurements, electromagnetic modeling, method of moments, bodies of revolution

Full Text:

PDF

References


Basics of Measuring the Dielectric Properties of Materials, Application Note, Keysight Technologies, Document available at: https://www.keysight.com/zz/en/assets/7018-01284/application-notes/5989-2589.pdf.

O. V. Tereshchenko, F. J. K. Buesink and F. B. J. Leferink, "An overview of the techniques for measuring the dielectric properties of materials", In Proceedings of the XXXth URSI Gen. Ass. Sci. Symp., vol. 1320, Istanbul, Turkey, 2011, pp. 1–4.

T. P. Marsland and S. Evans, "Dielectric measurements with an open-ended coaxial probe", IEE Proc. Microw., Antennas Propag., vol. 134, no. 4, pp. 341–349, 1987.

B. Sanadiki and M. Mostafavi, "Inversion of inhomogeneous continuously varying dielectric profiles using open-ended waveguides", IEEE Trans. Antennas Propag., vol. 39, no. 2, pp. 158–163, Feb. 1991.

D. K. Ghodgaonkar and V. V. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies", IEEE Trans. Instrum. Meas., vol. 37, pp. 789–793, 1989.

A. M. Nicolson and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques", IEEE Trans. Instrum. Meas., vol. IM–19, pp. 377–382, 1970.

A. R. Djordjević, R. M. Biljić, V. D. Likar-Smiljanić and T. K. Sarkar, "Wideband frequency-domain characterization of FR-4 and time-domain causality", IEEE Trans. Electromagn. Compat., vol. 43, pp. 662–667, 2001.

P. Dankov, B. Hadjistamov, I. Arestova and V. Levcheva, "Measurement of dielectric anisotropy of microwave substrates by two-resonator method with different pairs of resonators", PIERS Online, vol 5, pp. 501–505, Oct. 2009.

A. Đorđević, J. Dinkić, M. Stevanović, D. Olćan, S. Filipović and N. Obradović, "Measurement of permittivity of solid and liquid dielectrics in coaxial chambers", Microw. Rev., vol. 22, pp. 3–9, Dec. 2016.

R. F. Harrington, Time-Harmonic Electromagnetic Fields, Hoboken, NJ: Wiley-IEEE Press, 2001, Chapter 1.

B. M. Kolundžija and A. R. Djordjević, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Norwood, MA: Artech House, 2002, pp. 6–8.

R. F. Harrington, Field Computation by Moment Methods, Hoboken, NJ: Wiley-IEEE Press; 1993.

M. Salazar-Palma, T. K. Sarkar, L.-E. Garcia-Castillo, T. Roy and A.R. Djordjević, Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling, Norwood, MA: Artech House, 1998.

J. V. Surutka and D. M. Veličković: "Some improvements of the charge simulation method for computing electrostatic fields", Bull. Serb. Acad. Sci. Arts, Class Sci. Techn., no. 15, pp. 27–44, 1981.

D. M. Veličković and A. Milovanović, "Electrostatic field of cube electrodes", Serbian J. Electr. Eng., vol. 1, pp. 187–198, June 2004.

A. R. Djordjević, M. B. Baždar, R. F. Harrington and T. K. Sarkar, LINPAR for Windows: Matrix Parameters for Multiconductor Transmission Lines, Norwood, MA: Artech House, 1999.

CST Studio Suite, Available at: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.

M. M. Nikolić, A. R. Djordjević and M. M. Nikolić, ES3D: Electrostatic Field Solver for Multilayer Circuits, Norwood, MA: Artech House, 2007.

R. A. Handelsman and J. B. Keller, "The electrostatic field around a slender conducting body of revolution", SIAM J. Appl. Math., vol. 15, pp. 824–841, July 1967.

R. Barshinger, "The electrostatic field about a thin oblate dielectric body of revolution", SIAM J. Appl. Math., vol. 52, pp. 651–675, May 1991.

O. Ciftja, A. Babineaux and N. Hafeez N, "On the electrostatic potential of a uniformly charged ring", Eur. J. Phy., vol. 30, 623–627, May 2009.

A. R. Djordjević, Electromagnetics, Belgrade, Serbia: Academic Mind, 2008, Section 2.5.

D. Olćan, Diakoptic Analysis of Electromagnetic Systems, Ph.D. Thesis, School of Electrical Engineering, University of Belgrade, Serbia, 2008, pp. 26–28.

IMSL Fortran and C Application Development Tools, Houston, TX: Visual Numerics, 1997.

J. Dinkić, D. Olćan, A. Djordjević, А. Zajić, "Design and optimization of nonuniform helical antennas with linearly varying geometrical parameters", IEEE Access, vol. 7, pp. 1–12, Oct. 2019.

A. R. Djordjević, Fundamentals of Electrical Engineering, Belgrade, Serbia: Academic Mind, 2016, Section 1.10.1.

S. Filipović, N. Obradović, S. Marković, A. Đorđević, I. Balać, A. Dapčević, J. Rogan, V. Pavlović, "Physical properties of sintered alumina doped with different oxides", Sci. Sinter., vol. 50, pp. 1–11, 2018.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626