THE EXTENDED SMIRNOV THEOREM FOR PSEUDONEARNESS

Dieter Leseberg, Zohreh Vaziry

DOI Number
https://doi.org/10.22190/FUMI211026025L
First page
355
Last page
373

Abstract


Pseudonearness is a common enlargement of bornology, b-topology, pseudoproximity and classical nearness as well. Furthermore, generalized contiguity, here defined as contiguous pseudonearness, can be dealt with.

By using the b-completion of a regulative contiguous pseudonear space we obtain its b-compactification, which in a special case represents the Hausdorff compactification of the induced Efremovič proximity space.


Keywords

pseudonearness, bornology, b-topology, pseudoproximity

Full Text:

PDF

References


H. L. Bentley, H. Herrlich: Extensions of topological spaces. Topol. Proc. Memphis State Univ. Conf. 1975(1976), 129-184.

H. Herrlich: A concept of nearness. Gen. Topol. Appl. 4(1974), 191-212.

H. Hogbe-Nlend: Bornologies and Functional Analysis. North- Holland, Amsterdam (1977).

M. Hušek: Categorical connections between generalized proximity spaces and compactifications. Contr. Extension Theory, Symp. Berlin 1967(1969), 127-132.

V. M. Ivanova, A. A. Ivanov: Contiguity spaces and bicompact extensions. Dokl. Akad. Nauk SSSR 127(1959), 20-22.

C. Kuratowski: Sur l’ opération á de l’ analysis situs. Fund. Math. 3(1922), 182-199.

S. Leader: Local proximity spaces. Math. Annalen 169(1967), 275-281.

D. Leseberg and Z. Vaziry: Bounded Topology. LAP Acad. Pub. (2019).

D. Leseberg and Z. Vaziry: On bornological induced pseudonearness. Math. Appl. 9(2020), 95-121.

M. W. Lodato: On topological induced generalized proximity relations II. Pacific journal of Math Vol. 17, No. 1(1966), 131-135.

Y. M. Smirnov: On completeness of proximity spaces. Dokl. Acad.

Nauk. SSSR 88(1953), 761-764.




DOI: https://doi.org/10.22190/FUMI211026025L

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)