ON WARPED PRODUCT MANIFOLDS ADMITTING τ-QUASI RICCI-HARMONIC METRICS
Abstract
Keywords
Full Text:
PDFReferences
bibitem{AKO}
{sc D. {Açıkgöz Kaya} {rm and} L. Onat}: textit{Ricci solitons on multiply warped product manifolds}. Int. Electron. J. Geom. {bf 13(2)} (2020), 152--159.
bibitem{bat}
{sc E. Batista, L. Adriano {rm and} W. Tokura}:
textit{On warped product gradient {R}icci-harmonic soliton}.
arXiv preprint arXiv:1906.11933 (2019).
bibitem{besse}
{sc A.~L. Besse}:
textit{Einstein Manifolds}.
Springer-Verlag, Berlin Heidelberg, 1987.
bibitem{cat}
{sc G. Catino}:
textit{Generalized quasi-{E}instein manifolds with harmonic {W}eyl tensor}.
Math. Z. {bf 271} (2012), 751--756.
bibitem{de}
{sc U. C. De, C. A. Mantica, S. Shenawy {rm and} B. Ünal}:
textit{Ricci solitons on singly warped product manifolds and applications}.
J. Geom. Phys. {bf 166} (2021), 104257, 10 pp.
bibitem{FFG}
{sc F.~E.~S. Feitosa, A.~A.~F. Filho {rm and} J.~N.~V. Gomes}:
textit{On the construction of gradient {R}icci soliton warped product}.
Nonlinear Anal. {bf 161} (2017), 30--43.
bibitem{FFGP}
{sc F.~E.~S. Feitosa, A.~A.~F. Filho, J.~N.~V. Gomes, {rm and} R.~S. Pina}:
textit{Gradient almost {R}icci soliton warped product}. J. Geom. Phys. {bf 143} (2019), 22--32.
bibitem{GOK}
{sc S. Günsen, L. Onat {rm and} D. {Açıkgöz Kaya}}:
textit{The warped product manifold as a gradient {R}icci soliton and
relation to its components}. C. R. Acad. Bulgare Sci. {bf 72(8)} (2019), 1015--1023.
bibitem{guo}
{sc H. Guo, R. Philipowski {rm and} A. Thalmaier}:
textit{On gradient solitons of the {R}icci–harmonic flow}.
Acta Math. Sin. (Engl. Ser.) {bf 31(11)} (2015), 1798--1804.
bibitem{kar}
{sc F. Karaca}:
textit{Gradient {Y}amabe solitons on multiply warped product manifolds}.
Int. Electron. J. Geom. {bf 12(2)} (2019), 157--168.
bibitem{kaoz}
{sc F. Karaca, {rm and} C. Ozgur}:
textit{Gradient {R}icci solitons on multiply warped product manifolds}.
Filomat {bf 32(12)} (2018), 4221--4228.
bibitem{kim}
{sc D.-S. Kim, {rm and} Y.-H. Kim}:
textit{Compact {E}instein warped product spaces with nonpositive scalar
curvature}.
Proc. Amer. Math. Soc. {bf 131 (8)} (2003), 2573--2576.
bibitem{kimj}
{sc J. Kim}:
textit{Some doubly-warped product gradient {R}icci solitons}.
Commun. Korean Math. Soc. {bf 31(3)} (2016), 625--635.
bibitem{mull}
{sc R. Müller}:
textit{The {R}icci flow coupled with harmonic map heat
flow}. Ph. D. Thesis, ETH Zürich, 2009.
bibitem{mull2}
{sc R. Müller}:
textit{Ricci flow coupled with harmonic map flow}.
Ann. Sci. '{E}c. Norm. Sup'{e}r. (4) {bf 45(1)} (2012), 101--142.
bibitem{oneill}
{sc B. O'Neill}:
textit{Semi-Riemannian Geometry with Applications to Relativity}.
Academic Press, London, 1983.
bibitem{sp}
{sc M.~L. Sousa, {rm and} R. Pina}:
textit{Gradient {R}icci solitons with structure of warped product}.
Results Math. {bf 71(3-4)}, (2017), 825--840.
bibitem{tad}
{sc H. Tadano}:
textit{Gap theorems for {R}icci-harmonic solitons}.
Ann. Glob. Anal. Geom. {bf 49(2)} (2016), 165--175.
bibitem{tapb}
{sc W. Tokura, L. Adriano, R. Pina, {rm and} M. Barboza}:
textit{On warped product gradient {Y}amabe solitons}.
J. Math. Anal. Appl. {bf 473(1)} (2019), 201--214.
bibitem{wang1}
{sc L.~F. Wang}:
textit{Ricci-harmonic metrics}.
Ann. Acad. Sci. Fenn. Math. {bf 41(1)} (2016), 417--437.
bibitem{wang2}
{sc L.~F. Wang}:
textit{On f-non-parabolic ends for {R}icci-harmonic metrics}.
Ann. Glob. Anal. Geom. {bf 51(1)} (2017), 91--107.
bibitem{zeng}
{sc F. Zeng}:
textit{Rigid properties of generalized $tau$-quasi {R}icci-harmonic
metrics}. Results Math. {bf 75(4)} (2020), Paper No. 165, 24 pp.
bibitem{zhu}
{sc M. Zhu}:
textit{On the relation between {R}icci-harmonic solitons and {R}icci
solitons}.
J. Math. Anal. Appl. {bf 447(2)} (2017), 882--889.
DOI: https://doi.org/10.22190/FUMI211212023G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)