KILLING MAGNETIC FLUX SURFACES IN HEISENBERG THREE-GROUP
Abstract
In this paper, we determine, in the Heisenberg group, the parametric Killing magnetic flux surfaces and their corresponding Killing scalar flux functions. An examples of each are given with a graphic representation in Euclidean space.
Keywords
Full Text:
PDFReferences
A. H. Boozer, Physics of magnetically confined plasmas,
Rev. Mod. Phys. 76 (2004) 1071-1141.
M. Barros, A. Romero: Magnetic vortices, EPL 77 (2007), 34002.
R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport
Phenomena, Wiley. ISBN 0-471-07392-X, (1960).
W. Batat, A. Zaeim. On symmetries of the Heisenberg
group, arXiv:1710.04539v1.
L. Capogna, D. Danielli, S.D. Pauls, J.T. Tyson. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, (Progress in Mathematics). Birkh"{a}user Verlag, Basel (2007).
K. Derkaoui, F. Hathout, Explicit formulas for Killing
magnetic curves in three-dimensional Heisenberg group, Int. J. of Geo. Meth. in Modern Phy., 18(9)(2021), 2150135. doi/abs/10.1142/S0219887821501358
R. D. Hazeltine, J. D. Meiss, Plasma Confinement,
Dover publications, inc. Mineola, New York, (2003).
C. Özgür, On magnetic curves in $3$-dimensional
Heisenberg group, Pro. of the Ins. of Math. and Mech., National Academy of Sciences of Azerbaijan, 43(2) (2017), 278-286.
Z. Ozdemir, I. Gok, Y. Yayli, F.N. Ekmekci, Killing
magnetic flux surfaces in Euclidean 3-space, Honam Math. J., 41(2) (2019), 329-342. doi.org/10.5831/HMJ.2019.41.2.329
T.S. Pedersen, A. H. Boozer, Confinement of nonneutral
plasmas on magnetic surfaces, Phys. Rev. Lett. 88 (2002), 205002.
Walter. A. Strauss, Partial differential equations: An
introduction, ISBN 0-471-57364-7 (Wiley). The Mathematical Gazette, 77(1993)(479), 286-287. doi:10.2307/3619758by
http://fusionwiki.ciemat.es/wiki/Flux_surface
DOI: https://doi.org/10.22190/FUMI220226067D
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)