CANAL HYPERSURFACES ACCORDING TO GENERALIZED BISHOP FRAMES IN 4-SPACE
Abstract
Keywords
Full Text:
PDFReferences
bibitem {Aziz}H.S. ABDEL-AZÝZ and M.K. SAAD: emph{Computation of
Smarandache curves according to Darboux frame in Minkowski 3-space}. Journal
of the Egyptian Mathematical Society textbf{25} (2017), 382-390.
bibitem {Mahmut}M. AKY.{I}u{G}.{I}T, K. EREN and H.H. KOSAL: emph{Tubular Surfaces with
Modified Orthogonal Frame in Euclidean 3-Space}. Honam Mathematical
J. textbf{43(3)} (2021), 453-463.
bibitem {Altin4}M. ALTIN, A. KAZAN and H.B. KARADAu{G}: emph{Monge
Hypersurfaces in Euclidean 4-Space with Density}. Journal of
Polytechnic textbf{23(1)} (2020), 207-214.
bibitem {Altin2}M. ALTIN, A. KAZAN and D.W. YOON: emph{2-Ruled hypersurfaces in
Euclidean 4-space}. Journal of Geometry and Physics textbf{166}
(2021), 104236.
bibitem {Altin3}M. ALTIN and A. KAZAN: emph{Rotational Hypersurfaces in
Lorentz-Minkowski 4-Space}. Hacettepe Journal of Mathematics and
Statistics textbf{50(5)} (2021), 1409-1433.
bibitem {Aslan}S. ASLAN and Y. YAYLI: emph{Canal Surfaces with
Quaternions}. Adv. Appl. Clifford Algebr. textbf{26(1)} (2016), 31-38.
bibitem {Ates}F. ATEc{S}, .{I}. G"{O}K, F.N. EKMEKÇ.{I} and Y.
YAYLI: emph{Characterizations of Inclined Curves According to
Parallel Transport Frame in $E^{4}$ and Bishop Frame in $E^{3}$}
Konuralp Journal of Mathematics textbf{7(1)} (2019), 16-24.
bibitem {Aydin}M.E. AYDIN and I. MIHAI: emph{On certain surfaces in the
isotropic 4-space}. Mathematical Communications textbf{22(1)}
(2017), 41-51.
bibitem {Bishop}R.L. BISHOP: emph{There is more than one way to frame a
curve}. Amer. Math. Monthly textbf{82(3)} (1975), 246-251.
bibitem {Buyuk}S. B"{U}Y"{U}KK"{U}T"{U}K, .{I}. K.{I}c{S}.{I} and G.
"{O}ZT"{U}RK: emph{A characterization of curves according to
parallel transport frame in Euclidean n-space $E^{n}$}. New Trends
in Mathematical Sciences textbf{5(2)} (2017), 61-68.
bibitem {Carmo}M.P.D. CARMO: emph{Differential Geometry of Curves and
Surfaces}. Prentice Hall, Englewood Cliffs, NJ, 1976.
bibitem {Casorati}F. CASORATI: emph{Mesure de la courbure des surfaces
suivant l'id'{e}e commune}. Acta Mathematica textbf{14} (1890), 95-110.
bibitem {Yusuf}F. DOu{G}AN and Y. YAYLI: emph{Tubes with Darboux
Frame}. Int. J. Contemp. Math. Sci. textbf{7(16)} (2012), 751-758.
bibitem {Duldul}M. D"{U}LD"{U}L, B.U. D"{U}LD"{U}L, N. KURUOu{G}LU and
E. "{O}ZDAMAR: emph{Extension of the Darboux frame into Euclidean
-space
and its invariants.} Turk J Math. textbf{41(6)} (2017), 1628-1639.
bibitem {Garcia}R. GARCIA, J. LLIBRE and J. SOTOMAYOR: emph{ Lines of
Principal Curvature on Canal Surfaces in }$%
%TCIMACRO{U{211d} }%
%BeginExpansion
mathbb{R}
%EndExpansion
^{3}$. An. Acad. Brasil. Cienc. textbf{78(3)} (2006), 405-415.
bibitem {Gluck}H. GLUCK: emph{Higher curvatures of curves in Euclidean
space}. Amer Math Monthly textbf{73} (1966), 699-704.
bibitem {8}F. G"{O}Kc{C}EL.{I}K, Z. BOZKURT, .{I}. G"{O}K, F.N. EKMEKC.{I} and
Y. YAYLI: emph{Parallel Transport Frame in 4-dimensional Euclidean
Space $E^{4}$}. Caspian J. of Math. Sci. textbf{3(1)} (2014),
-103.
bibitem {Guler1}E. G"{U}LER: emph{Helical Hypersurfaces in Minkowski Geometry
$E^{4}_{1}$}. Symmetry textbf{12(8)} (2020), 1206.
bibitem {Guler2}E. G"{U}LER, H.H. HACISAL.{I}Ou{G}LU and Y.H. KIM: emph{The
Gauss map and the third Laplace-Beltrami operator of the rotational
hypersurface in 4-Space}. Symmetry textbf{10(9)} (2018), 398.
bibitem {Gray}A. GRAY: emph{Modern Differential Geometry of Curves and Surfaces
with Mathematica}. 2nd edn. CRC Press, Boca Raton, 1999.
bibitem {Hartman}E. HARTMAN: emph{Geometry and Algorithms for Computer Aided
Design}. Dept. of Math. Darmstadt Univ. of Technology, 2003.
bibitem {Izumiya}S. IZUMIYA and M. TAKAHASHI: emph{On caustics of
submanifolds and canal hypersurfaces in Euclidean space.} Topology Appl. textbf{159(2)}
(2012), 501-508.
bibitem {Karacan}M.K. KARACAN, H. ES and Y. YAYLI: emph{Singular Points
of Tubular Surfaces in Minkowski 3-Space}. Sarajevo J. Math. textbf{2(14)} (2006), 73-82.
bibitem {Karacan2}M.K. KARACAN and Y. TUNCER: emph{Tubular Surfaces of
Weingarten Types in Galilean and Pseudo-Galilean}. Bull. Math. Anal. Appl.
textbf{5(2)} (2013), 87-100.
bibitem {Karacan3}M.K. KARACAN, D.W. YOON and Y. TUNCER: emph{Tubular
Surfaces of Weingarten Types in Minkowski 3-Space.} Gen. Math. Notes textbf{22(1)}
(2014), 44-56.
bibitem {Altin}A. KAZAN, M. ALTIN and D.W. YOON: emph{Geometric Characterizations
of Canal Hypersurfaces in Euclidean Spaces}. arXiv:2111.04448v1
[math.DG], (2021).
bibitem {Kazan1}A. KAZAN and H.B. KARADAu{G}: emph{Magnetic Curves
According to Bishop Frame and Type-2 Bishop Frame in Euclidean
-Space.} British Journal of Mathematics & Computer Science textbf{22(4)} (2017), 1-18.
bibitem {Sezai}S. KIZILTU{G}, M. DEDE and C. EK.{I}C.{I}: emph{Tubular
Surfaces with Darboux Frame in Galilean 3-Space}. Facta Universitatis Ser.
Math. Inform. textbf{34(2)} (2019), 253-260.
bibitem {Kim}Y.H. KIM, H. LIU and J. QIAN: emph{Some Characterizations of
Canal Surfaces}. Bull. Korean Math. Soc. textbf{53(2)} (2016), 461-477.
bibitem {Kisi}.{I}. K.{I}c{S}.{I}, G. "{O}ZT"{U}RK and K. ARSLAN: emph{A new type of
canal surface in Euclidean 4-space $E^{4},$} Sakarya University
Journal of Science textbf{23(5)} (2019), 801-809.
bibitem {Krivos}S.N. KRIVOSHAPKO and C.A.B. HYENG: emph{Classification of
Cyclic Surfaces and Geometrical Research of Canal Surfaces}. International
Journal of Research and Reviews in Applied Sciences textbf{12(3)}
(2012), 360-374.
bibitem {Lee}J.M. LEE: emph{Riemannian Manifolds-An Introduction to
Curvature}.
Springer-Verlag New York, Inc, 1997.
bibitem {Maekawa}T. MAEKAWA, N.M. PATRIKALAKIS, T. SAKKALIS and G.
YU: emph{Analysis and Applications of Pipe Surfaces}. Comput. Aided
Geom. Design textbf{15(5)} (1998), 437-458.
bibitem {NDiaye}A. NDIAYE and Z. "{O}ZDEM.{I}R: emph{2-Ruled hypersurfaces in Minkowski 4-space and their
constructions via octonion}. arXiv:2205.10808v1 [math.DG] (2022).
bibitem {Nomoto}S. NOMOTO and H. NOZAWA: emph{Generalized Bishop Frames on Curves
on $E^{4}$}. arXiv:2201.03022v1 [math.DG], (2022).
bibitem {Oneill}B. O'NEILL: emph{Semi-Riemannian Geometry with Applications to
Relativity}. Academic Press, London, 1983.
bibitem {Peter}M. PETERNELL and H. POTTMANN: emph{Computing Rational
Parametrizations of Canal Surfaces}. J. Symbolic Comput. textbf{23(2-3)} (1997), 255-266.
bibitem {Ro}J.S. RO and D.W. YOON: emph{Tubes of Weingarten Type in a
Euclidean 3-Space}. Journal of the Chungcheong Mathematical Society textbf{22(3)}
(2009), 359-366.
bibitem {Ucum}A. Uc{C}UM and K. .{I}LARSLAN: emph{New Types of Canal
Surfaces in Minkowski 3-Space.} Adv. Appl. Clifford Algebr. textbf{26(1)} (2016), 449-468.
bibitem {Xu}Z. XU, R. FENG and J-G. SUN: emph{Analytic and Algebraic
Properties of Canal Surfaces}. J. Comput. Appl. Math. textbf{195(1-2)} (2006), 220-228.
bibitem {Kucuk}D.W. YOON and Z.K. Y"{U}ZBAc{S}I:
emph{Tubular Surfaces with Galilean Darboux Frame in }$G_{3}$.
Journal of Mathematical Physics, Analysis, Geometry textbf{15(2)}
(2019), 278-287.
DOI: https://doi.org/10.22190/FUMI220331050K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)