CANAL HYPERSURFACES ACCORDING TO GENERALIZED BISHOP FRAMES IN 4-SPACE

Ahmet Kazan, Mustafa Altın

DOI Number
https://doi.org/10.22190/FUMI220331050K
First page
721
Last page
738

Abstract


In the present paper, we study the canal hypersurfaces according to generalized Bishop frames of type B (parallel transport frame), type C and type D in Euclidean 4-space and obtain the Gaussian, mean and principal curvatures of them in general form. We give some results for their flatness, minimality and we examine the Weingarten canal hypersurfaces according to these frames. Especially, we investigate the tubular hypersurfaces by taking the radius function is constant in these canal hypersurfaces.

Keywords

Canal Hypersurface, Tubular Hypersurface, Generalized Bishop Frames, Weingarten Hypersurface.

Full Text:

PDF

References


bibitem {Aziz}H.S. ABDEL-AZÝZ and M.K. SAAD: emph{Computation of

Smarandache curves according to Darboux frame in Minkowski 3-space}. Journal

of the Egyptian Mathematical Society textbf{25} (2017), 382-390.

bibitem {Mahmut}M. AKY.{I}u{G}.{I}T, K. EREN and H.H. KOSAL: emph{Tubular Surfaces with

Modified Orthogonal Frame in Euclidean 3-Space}. Honam Mathematical

J. textbf{43(3)} (2021), 453-463.

bibitem {Altin4}M. ALTIN, A. KAZAN and H.B. KARADAu{G}: emph{Monge

Hypersurfaces in Euclidean 4-Space with Density}. Journal of

Polytechnic textbf{23(1)} (2020), 207-214.

bibitem {Altin2}M. ALTIN, A. KAZAN and D.W. YOON: emph{2-Ruled hypersurfaces in

Euclidean 4-space}. Journal of Geometry and Physics textbf{166}

(2021), 104236.

bibitem {Altin3}M. ALTIN and A. KAZAN: emph{Rotational Hypersurfaces in

Lorentz-Minkowski 4-Space}. Hacettepe Journal of Mathematics and

Statistics textbf{50(5)} (2021), 1409-1433.

bibitem {Aslan}S. ASLAN and Y. YAYLI: emph{Canal Surfaces with

Quaternions}. Adv. Appl. Clifford Algebr. textbf{26(1)} (2016), 31-38.

bibitem {Ates}F. ATEc{S}, .{I}. G"{O}K, F.N. EKMEKÇ.{I} and Y.

YAYLI: emph{Characterizations of Inclined Curves According to

Parallel Transport Frame in $E^{4}$ and Bishop Frame in $E^{3}$}

Konuralp Journal of Mathematics textbf{7(1)} (2019), 16-24.

bibitem {Aydin}M.E. AYDIN and I. MIHAI: emph{On certain surfaces in the

isotropic 4-space}. Mathematical Communications textbf{22(1)}

(2017), 41-51.

bibitem {Bishop}R.L. BISHOP: emph{There is more than one way to frame a

curve}. Amer. Math. Monthly textbf{82(3)} (1975), 246-251.

bibitem {Buyuk}S. B"{U}Y"{U}KK"{U}T"{U}K, .{I}. K.{I}c{S}.{I} and G.

"{O}ZT"{U}RK: emph{A characterization of curves according to

parallel transport frame in Euclidean n-space $E^{n}$}. New Trends

in Mathematical Sciences textbf{5(2)} (2017), 61-68.

bibitem {Carmo}M.P.D. CARMO: emph{Differential Geometry of Curves and

Surfaces}. Prentice Hall, Englewood Cliffs, NJ, 1976.

bibitem {Casorati}F. CASORATI: emph{Mesure de la courbure des surfaces

suivant l'id'{e}e commune}. Acta Mathematica textbf{14} (1890), 95-110.

bibitem {Yusuf}F. DOu{G}AN and Y. YAYLI: emph{Tubes with Darboux

Frame}. Int. J. Contemp. Math. Sci. textbf{7(16)} (2012), 751-758.

bibitem {Duldul}M. D"{U}LD"{U}L, B.U. D"{U}LD"{U}L, N. KURUOu{G}LU and

E. "{O}ZDAMAR: emph{Extension of the Darboux frame into Euclidean

-space

and its invariants.} Turk J Math. textbf{41(6)} (2017), 1628-1639.

bibitem {Garcia}R. GARCIA, J. LLIBRE and J. SOTOMAYOR: emph{ Lines of

Principal Curvature on Canal Surfaces in }$%

%TCIMACRO{U{211d} }%

%BeginExpansion

mathbb{R}

%EndExpansion

^{3}$. An. Acad. Brasil. Cienc. textbf{78(3)} (2006), 405-415.

bibitem {Gluck}H. GLUCK: emph{Higher curvatures of curves in Euclidean

space}. Amer Math Monthly textbf{73} (1966), 699-704.

bibitem {8}F. G"{O}Kc{C}EL.{I}K, Z. BOZKURT, .{I}. G"{O}K, F.N. EKMEKC.{I} and

Y. YAYLI: emph{Parallel Transport Frame in 4-dimensional Euclidean

Space $E^{4}$}. Caspian J. of Math. Sci. textbf{3(1)} (2014),

-103.

bibitem {Guler1}E. G"{U}LER: emph{Helical Hypersurfaces in Minkowski Geometry

$E^{4}_{1}$}. Symmetry textbf{12(8)} (2020), 1206.

bibitem {Guler2}E. G"{U}LER, H.H. HACISAL.{I}Ou{G}LU and Y.H. KIM: emph{The

Gauss map and the third Laplace-Beltrami operator of the rotational

hypersurface in 4-Space}. Symmetry textbf{10(9)} (2018), 398.

bibitem {Gray}A. GRAY: emph{Modern Differential Geometry of Curves and Surfaces

with Mathematica}. 2nd edn. CRC Press, Boca Raton, 1999.

bibitem {Hartman}E. HARTMAN: emph{Geometry and Algorithms for Computer Aided

Design}. Dept. of Math. Darmstadt Univ. of Technology, 2003.

bibitem {Izumiya}S. IZUMIYA and M. TAKAHASHI: emph{On caustics of

submanifolds and canal hypersurfaces in Euclidean space.} Topology Appl. textbf{159(2)}

(2012), 501-508.

bibitem {Karacan}M.K. KARACAN, H. ES and Y. YAYLI: emph{Singular Points

of Tubular Surfaces in Minkowski 3-Space}. Sarajevo J. Math. textbf{2(14)} (2006), 73-82.

bibitem {Karacan2}M.K. KARACAN and Y. TUNCER: emph{Tubular Surfaces of

Weingarten Types in Galilean and Pseudo-Galilean}. Bull. Math. Anal. Appl.

textbf{5(2)} (2013), 87-100.

bibitem {Karacan3}M.K. KARACAN, D.W. YOON and Y. TUNCER: emph{Tubular

Surfaces of Weingarten Types in Minkowski 3-Space.} Gen. Math. Notes textbf{22(1)}

(2014), 44-56.

bibitem {Altin}A. KAZAN, M. ALTIN and D.W. YOON: emph{Geometric Characterizations

of Canal Hypersurfaces in Euclidean Spaces}. arXiv:2111.04448v1

[math.DG], (2021).

bibitem {Kazan1}A. KAZAN and H.B. KARADAu{G}: emph{Magnetic Curves

According to Bishop Frame and Type-2 Bishop Frame in Euclidean

-Space.} British Journal of Mathematics & Computer Science textbf{22(4)} (2017), 1-18.

bibitem {Sezai}S. KIZILTU{G}, M. DEDE and C. EK.{I}C.{I}: emph{Tubular

Surfaces with Darboux Frame in Galilean 3-Space}. Facta Universitatis Ser.

Math. Inform. textbf{34(2)} (2019), 253-260.

bibitem {Kim}Y.H. KIM, H. LIU and J. QIAN: emph{Some Characterizations of

Canal Surfaces}. Bull. Korean Math. Soc. textbf{53(2)} (2016), 461-477.

bibitem {Kisi}.{I}. K.{I}c{S}.{I}, G. "{O}ZT"{U}RK and K. ARSLAN: emph{A new type of

canal surface in Euclidean 4-space $E^{4},$} Sakarya University

Journal of Science textbf{23(5)} (2019), 801-809.

bibitem {Krivos}S.N. KRIVOSHAPKO and C.A.B. HYENG: emph{Classification of

Cyclic Surfaces and Geometrical Research of Canal Surfaces}. International

Journal of Research and Reviews in Applied Sciences textbf{12(3)}

(2012), 360-374.

bibitem {Lee}J.M. LEE: emph{Riemannian Manifolds-An Introduction to

Curvature}.

Springer-Verlag New York, Inc, 1997.

bibitem {Maekawa}T. MAEKAWA, N.M. PATRIKALAKIS, T. SAKKALIS and G.

YU: emph{Analysis and Applications of Pipe Surfaces}. Comput. Aided

Geom. Design textbf{15(5)} (1998), 437-458.

bibitem {NDiaye}A. NDIAYE and Z. "{O}ZDEM.{I}R: emph{2-Ruled hypersurfaces in Minkowski 4-space and their

constructions via octonion}. arXiv:2205.10808v1 [math.DG] (2022).

bibitem {Nomoto}S. NOMOTO and H. NOZAWA: emph{Generalized Bishop Frames on Curves

on $E^{4}$}. arXiv:2201.03022v1 [math.DG], (2022).

bibitem {Oneill}B. O'NEILL: emph{Semi-Riemannian Geometry with Applications to

Relativity}. Academic Press, London, 1983.

bibitem {Peter}M. PETERNELL and H. POTTMANN: emph{Computing Rational

Parametrizations of Canal Surfaces}. J. Symbolic Comput. textbf{23(2-3)} (1997), 255-266.

bibitem {Ro}J.S. RO and D.W. YOON: emph{Tubes of Weingarten Type in a

Euclidean 3-Space}. Journal of the Chungcheong Mathematical Society textbf{22(3)}

(2009), 359-366.

bibitem {Ucum}A. Uc{C}UM and K. .{I}LARSLAN: emph{New Types of Canal

Surfaces in Minkowski 3-Space.} Adv. Appl. Clifford Algebr. textbf{26(1)} (2016), 449-468.

bibitem {Xu}Z. XU, R. FENG and J-G. SUN: emph{Analytic and Algebraic

Properties of Canal Surfaces}. J. Comput. Appl. Math. textbf{195(1-2)} (2006), 220-228.

bibitem {Kucuk}D.W. YOON and Z.K. Y"{U}ZBAc{S}I:

emph{Tubular Surfaces with Galilean Darboux Frame in }$G_{3}$.

Journal of Mathematical Physics, Analysis, Geometry textbf{15(2)}

(2019), 278-287.




DOI: https://doi.org/10.22190/FUMI220331050K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)