ON RECURRENCE RELATIONS FOR BERNOULLI POLYNOMIALS AND NUMBERS
Abstract
In this work we connect Bernoulli numbers and polynomials to Mersenne numbers via recurrence relations. We find two explicit formulas of Bernoulli numbers by means of Mersenne numbers different from those given by F. Qi and X. Y. Chen et al. To end with other interesting relationships, which serve as bridges between the Bernoulli polynomials and Mersenne numbers.
Keywords
Full Text:
PDFReferences
M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions. National Bureau of Standards, 1964.
T. Agoh: Determinantal expressions for Bernoulli polynomials. Integers 19 Article A9 (2019).
T. M. Apostol: Introduction to analytic number theory. Springer-Verlag New York Heidelberg Berlin 1976.
X. Y. Chen, L. Wu, D. Lim and F. Qi: Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind. Demonstratio Mathematica 55 (2022), 822–830.
L. Comtet: Advanced combinatorics. Riedel, Boston, 1974.
R. Frontczak, T. Goy: Mersenne-Horadam identities using generating function. Carpathian Math. Publ., 12(1) (2020), 34–45.
M. Goubi: On a Generalized family of Euler-Gennochi polynomials. Integers, 21 Article A48 (2021).
B. N. Guo ans F. Qi: An Explicit Formula for Bernoulli Numbers in Terms of Stirling Numbers of the Second Kind. J. Ana. Num. Theor. 3(1) (2015), 27–30.
E. R. Hansen: A Table of Series and Products. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
M. Kaneko: A Recurrence Formula for the Bernoulli Numbers. Proc. Japan Acad., 71, Ser. A (1995), 192–193.
D. S. Kim, T. Kim, S. H. Lee and J. W. Park: Some new formulas of complete and incomplete degenerate Bell polynomials. Adv. Difference Equ., 326 (2021), 10 pp.
D. S. Kim and T. A. Kim: note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 27(2) (2020), 227–235.
T. Kim and D. S. Kim: Degenerate Whitney Numbers of First and Second Kind of Dowling Lattices. Russ. J. Math. Phys. 29(3) (2022), 358–377.
T. Kim, D. S. Kim and J. W. Park: Fully degenerate Bernoulli numbers and polynomials. Demonstr. Math. 55(1) (2022), 604–614.
T. Kim and D. S. Kim: On some degenerate differential and degenerate difference operators. Russ. J. Math. Phys. 29(1) (2022), 37–46.
T. Kim, D. S. J. Kim and Gwan-Woo: On degenerate central
complete Bell polynomials. Appl. Anal. Discrete Math. 13(3) (2019), 805–818.
F. W. J. Olver et al.: NIST Handbook of Mathematical Functions. Univ. Press, New York, 2010. On-line version: http://dlmf.nist.gov.
F. Qi, R. J. Chapman: Two closed forms for the Bernoulli polynomials. Journal of Number Theory 159 (2016), 89–100.
J. Worpitzky: Studien ¨uber die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math. 94 (1883), 203–232.
DOI: https://doi.org/10.22190/FUMI220405001G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)