ON THE GENERALIZED DUAL FIBONACCI AND LUCAS OCTONIONS

Sure Köme

DOI Number
https://doi.org/10.22190/FUMI220505027K
First page
391
Last page
409

Abstract


Generalized number systems, particularly octonions with their algebraic structure, have drawn much interest in mathematics, physics, and computer technology. Therefore, in this paper, we introduce two new concepts, modified generalized dual Fibonacci and modified generalized dual Lucas octonions, to expand the topic of octonions. Additionally, we explore the well-known Catalan and Cassini identities, shedding light on the characteristics of these new constructs. Also, we give generating functions and the Binet formulas of the modified generalized dual Fibonacci and modified generalized dual Lucas octonions.


Keywords

Fibonacci Octonions, Lucas Octonions, Catalan identities.

Full Text:

PDF

References


A.F. Horadam : Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly. 70(3) (1963), 289–291.

A. ˙Ipek and C.B. C¸ imen : On (p, q)−Fibonacci Octonions. Mathematica Aeterna. 6(6) (2016), 923–932.

A. Szynal-Liana and I. W loch : A note on Jacobsthal quaternions. Advances in Applied Clifford Algebras. 26(1) (2016), 441–447.

C.B. C¸ imen and A. ˙Ipek : On Pell Quaternions and Pell-Lucas Quaternions. Advances in Applied Clifford Algebras. 26(1) (2016), 39–51.

E. Tan : On a new generalization of Fibonacci quaternions. Chaos, Solitons & Fractals. 82 (2016), 1–4.

E. Tan, S. Yılmaz and M. S¸ahin : A note on bi-periodic Fibonacci and Lucas quaternions. Chaos, Solitons & Fractals. 85 (2016), 138–142.

G. Bilgici : Two generalizations of Lucas sequence. Applied Mathematics and Computation. 245 (2014), 526–538.

J. L. Ramirez : Some combinatorial properties of the k−Fibonacci and the k−Lucas quaternions. Analele stiintifice ale Universitatii Ovidius Constanta. 23(2) (2015), 201–212.

M. Edson and O. Yayenie : A New Generalization of Fibonacci Sequence & Extended Binet’s Formula. Integers. 9(6) (2009), 639–654.

S.K. Nurkan and ˙I.S. G¨uven : Dual Fibonacci Quaternions. Advances in Applied Clifford Algebras. 25 (2015), 403–414.

O. Kec¸ilio˘glu and ˙I. Akkus¸ : The Fibonacci Octonions. Advances in Applied Clifford Algebras. 25 (2015), 151–158.

W. Clifford : Preliminary sketch of biquaternions. Proceedings of the London Mathematical Society. 1(1) (1871), 381–395.

O. Yayenie : A note on generalized Fibonacci sequences. Applied Mathematics and Computation. 217(12) (2011), 5603–5611.

P. Catarino : A note on h(x)-Fibonacci quaternion polynomials. Chaos, Solitons & Fractals. 77 (2015), 1–5.

S. Falc´on: On the k−Lucas numbers. International Journal of Contemporary Mathematical Sciences. 6(21) (2011), 1039–1050.

S. Falc´on and A. Plaza : The k−Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons & Fractals. 33(1) (2007), 38–49.

S. Halıcı : On Fibonacci quaternions. Advances in applied Clifford algebras. 22(2) (2012), 321–327.

S. Halıcı : On complex Fibonacci quaternions. Advances in applied Clifford algebras. 23(1) (2013), 105–112.

S. Halıcı : On dual Fibonacci octonions. Advances in applied Clifford algebras. 25 (2015), 905–914.

S. Halıcı and A. Karatas¸ : On a generalization for Fibonacci quaternions. Chaos, Solitons & Fractals. 98 (2017), 178–182.

S. K¨ome, C. K¨ome and Y. Yazlık : Modified Generalized Fibonacci and Lucas Quaternions. Journal of Science and Arts. 19(1) (2019), 49–60.

S. K¨ome and H. Kirik : On the generalized Fibonacci and Lucas 2k−ions. Notes on Number Theory and Discrete Mathematics. 26(4) (2020), 173–186.

T. Koshy : Fibonacci and Lucas numbers with applications. A Wiley-Interscience Publication, 2001.

Y. Tian: Matrix representations of octonions and their applications. Advances in Applied Clifford Algebras. 10(1) (2000), 61–90.

Y. Yazlık, C. K¨ome and V. Madhusudanan : A new generalization of Fibonacci and Lucas p−numbers. Journal of Computational Analysis and Applications. 25(4) (2018), 657–669.

Y. Yazlık and N. Tas¸kara : A note on generalized k−Horadam sequence. Computers & Mathematics with Applications. 63(1) (2012), 36–41.

Z. ¨Unal, ¨U. Tokes¸er and G. Bilgici : Some Properties of Dual Fibonacci and Dual Lucas Octonions. Advances in Applied Clifford Algebras. 27 (2017), 1907–1916.

W. R.. Hamilton : Elements of quaternions.Longmans, Green, & Company, 1866.




DOI: https://doi.org/10.22190/FUMI220505027K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)