EXISTENCE RESULT FOR A COUPLED SYSTEM OF HYBRID FRACTIONAL DIFFERENTIAL EQUATIONS IN A BANACH ALGEBRA

Hari Mohan Srivastava, Benaouda Hedia

DOI Number
https://doi.org/10.22190/FUMI220808043S
First page
643
Last page
665

Abstract


In this work, we investigate the existence result for a coupled system of hybrid fractional differential equations in a Banach algebra. Our main result is based on a generalization of Darbo’s fixed point theorem in Banach algebra. We apply in our approach the technique of measure of non-compactness, we prove that the Kuratowski measure of noncompactness satisfies a condition (m) which will be useful in our considerations. An example is given to illustrate the feasibility of our main result. An example is provided to illustrate our result.

Keywords

hybrid fractional differential equations, Banach algebra, Darbo’s fixed point theorem, Kuratowski measure.

Full Text:

PDF

References


A. Aghajani, J. Banas and N. Sebzali: Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc. 20 (2013), 345–358.

J. Banas and L. Olszowy: On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. Z. Anal. Anwend. 28 (2009), 475–498.

M. Beddani and B. Hedia: Existence result for a fractional differential equation involving special derivative. Moroccan J. of Pure and Appl. Anal. 8(1) (2022), 67–77.

M. Beddani and B. Hedia: Existence result for fractional differential equation on unbounded domain. Kragujev. J. Math. 48(5) (2024), 755–766.

M. Beddani and B. Hedia: Solution sets for fractional differential inclusions. J. Fractional Calc. Appl. 10(2) July (2019), 273–289.

F. Z. Berrabah, M. Boukrouche and B. Hedia: Fractional Derivatives with Respect to Time for Non-Classical Heat Problem. J. Math. Phys. Anal. Geom. 17 (2021), 30–53.

F. Z. Berrabah, B. Hedia and J. Henderson: Fully Hadamard and Erdelyi-Kobertype integral boundary value problem of a coupled system of implicit differential equations. Turk. J. Math. 43 (2019), 1308-1329.

F. Z. Berrabah, B. Hedia and M. Kirane: Lyapunov- and Hartman–Wintner-type inequalities for a nonlinear fractional BVP with generalized-Hilfer derivative. Math. Method. Appl. Sci. 44 (2021), 2637–2649.

J. Caballero, M. Darwish and K. Sadarangani: Existence of solutions for a fractional hybrid boundary value problem via measure of noncompactness in Banach algebras. Topol. Methods. Nonlinear. Anal. 43(2) (2014), 535–548.

G. Darbo: Punti uniti in transformazioni a condominio non compatto. Rendiconti del Seminario Matematico della Universita di Padova. 24 (1955), 84–92.

A. El Sayed, S. Alissa and N. H. Al Maoued: On A Coupled System of Hybrid Fractional-order Differential Equations in Banach Algebras. Adv. Dyn. Syst. Appl. 16(1), 91–112.

E. Guariglia: Fractional calculus of the Lerch zeta function. Mediterr. J. Math. 19(109) (2022).

E. Guariglia: Fractional calculus, zeta functions and Shannon entropy. Open Math. 19(1) (2021), 87–100.

E. Guariglia: Riemann zeta fractional derivative-functional equation and link with primes. Adv. Differ. Equ. 2019(1(261)) (2019).

B. Hedia: Non-local Conditions for Semi-linear Fractional Differential Equations with Hilfer Derivative, Springer proceeding in mathematics and statistics 303. ICFDA 2018, Amman, Jordan, July 16–18 (2018), 69–83.

B. Hedia and K. Benia: Hybrid implicit fractional integro-differential equations with Hadamard integral boundary conditions. Dyn. Contin. Discrete. Impuls. Syst. 28 (2021), 207–222.

B. Hedia, F. Z. Berrabah and J. Henderson : Existence results for differential evolution equations with nonlocal conditions in Banach space. Malaya. J. Mat. 6 (2018), 457–466.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo: Theory and Applications of Fractional Differential Equations. Elsevier B. V. Amsterdam, (2006).

K. Kuratowski: Sur les espaces complets. Fundam. Math. 15 (1930), 301–309.

C. Li , X. Dao and P. Guo : Fractional derivatives in complex planes. Nonlinear Anal. 71(5-6) (2009), 1857–1869.

S. D. Lin and H. M. Srivastava: Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154(1) (2004), 725–733.

A. Mathai and H. J. Haubold: Erdelyi-Kober Fractional Calculus, Springer Briefs in Mathematical Physics. Germany: Springer 23 (2018).

H. M. Srivastava: An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 5 (2021), 135–166.

H. M. Srivastava: Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 60 (2020), 73–116.

H. M. Srivastava: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 44(1) (2020), 327–344.

H. M. Srivastava: Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 22 (2021), 1501–1520.

P. Zvada: Operator of fractional derivative in the complex plane. Comm. Math. Phys. 192(2) (1998), 261–285.




DOI: https://doi.org/10.22190/FUMI220808043S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)