EXISTENCE RESULT FOR A COUPLED SYSTEM OF HYBRID FRACTIONAL DIFFERENTIAL EQUATIONS IN A BANACH ALGEBRA
Abstract
Keywords
Full Text:
PDFReferences
A. Aghajani, J. Banas and N. Sebzali: Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc. 20 (2013), 345–358.
J. Banas and L. Olszowy: On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. Z. Anal. Anwend. 28 (2009), 475–498.
M. Beddani and B. Hedia: Existence result for a fractional differential equation involving special derivative. Moroccan J. of Pure and Appl. Anal. 8(1) (2022), 67–77.
M. Beddani and B. Hedia: Existence result for fractional differential equation on unbounded domain. Kragujev. J. Math. 48(5) (2024), 755–766.
M. Beddani and B. Hedia: Solution sets for fractional differential inclusions. J. Fractional Calc. Appl. 10(2) July (2019), 273–289.
F. Z. Berrabah, M. Boukrouche and B. Hedia: Fractional Derivatives with Respect to Time for Non-Classical Heat Problem. J. Math. Phys. Anal. Geom. 17 (2021), 30–53.
F. Z. Berrabah, B. Hedia and J. Henderson: Fully Hadamard and Erdelyi-Kobertype integral boundary value problem of a coupled system of implicit differential equations. Turk. J. Math. 43 (2019), 1308-1329.
F. Z. Berrabah, B. Hedia and M. Kirane: Lyapunov- and Hartman–Wintner-type inequalities for a nonlinear fractional BVP with generalized-Hilfer derivative. Math. Method. Appl. Sci. 44 (2021), 2637–2649.
J. Caballero, M. Darwish and K. Sadarangani: Existence of solutions for a fractional hybrid boundary value problem via measure of noncompactness in Banach algebras. Topol. Methods. Nonlinear. Anal. 43(2) (2014), 535–548.
G. Darbo: Punti uniti in transformazioni a condominio non compatto. Rendiconti del Seminario Matematico della Universita di Padova. 24 (1955), 84–92.
A. El Sayed, S. Alissa and N. H. Al Maoued: On A Coupled System of Hybrid Fractional-order Differential Equations in Banach Algebras. Adv. Dyn. Syst. Appl. 16(1), 91–112.
E. Guariglia: Fractional calculus of the Lerch zeta function. Mediterr. J. Math. 19(109) (2022).
E. Guariglia: Fractional calculus, zeta functions and Shannon entropy. Open Math. 19(1) (2021), 87–100.
E. Guariglia: Riemann zeta fractional derivative-functional equation and link with primes. Adv. Differ. Equ. 2019(1(261)) (2019).
B. Hedia: Non-local Conditions for Semi-linear Fractional Differential Equations with Hilfer Derivative, Springer proceeding in mathematics and statistics 303. ICFDA 2018, Amman, Jordan, July 16–18 (2018), 69–83.
B. Hedia and K. Benia: Hybrid implicit fractional integro-differential equations with Hadamard integral boundary conditions. Dyn. Contin. Discrete. Impuls. Syst. 28 (2021), 207–222.
B. Hedia, F. Z. Berrabah and J. Henderson : Existence results for differential evolution equations with nonlocal conditions in Banach space. Malaya. J. Mat. 6 (2018), 457–466.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo: Theory and Applications of Fractional Differential Equations. Elsevier B. V. Amsterdam, (2006).
K. Kuratowski: Sur les espaces complets. Fundam. Math. 15 (1930), 301–309.
C. Li , X. Dao and P. Guo : Fractional derivatives in complex planes. Nonlinear Anal. 71(5-6) (2009), 1857–1869.
S. D. Lin and H. M. Srivastava: Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154(1) (2004), 725–733.
A. Mathai and H. J. Haubold: Erdelyi-Kober Fractional Calculus, Springer Briefs in Mathematical Physics. Germany: Springer 23 (2018).
H. M. Srivastava: An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 5 (2021), 135–166.
H. M. Srivastava: Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 60 (2020), 73–116.
H. M. Srivastava: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 44(1) (2020), 327–344.
H. M. Srivastava: Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 22 (2021), 1501–1520.
P. Zvada: Operator of fractional derivative in the complex plane. Comm. Math. Phys. 192(2) (1998), 261–285.
DOI: https://doi.org/10.22190/FUMI220808043S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)