### PROPAGATION OF POLARIZED LIGHT AND ELECTROMAGNETIC CURVES IN THE OPTICAL FIBER IN WALKER 3-MANIFOLDS

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

M. Brozos-Vazquez, E. Garcıa-Rio, P. Gilkey, S. Nikevic, R. Vàzquez-Lorenzo, The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics. 5. Morgan and Claypool Publishers, Williston, VT, 2009.

G. Calvaruso, J. Van der Veken, Parallel surfaces in Lorentzian three-manifolds admitting a parallel null vector field, J. Phys. A: Math. Theor. 43 (2010) 325-207.

M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. viii+503 pp. 190-191.

J.N. Ross, The rotation of the polarization in low briefrigence monomode optical fibres due to geometric effects, Opt. Quantum Electron. 16 (5) (1984) 455.

M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London A 392 (1984) 45.

M. Kugler, S. Shtrikman, Berry’s phase, locally inertial frames, and classical analogues, Phys. Rev. D 37 (4) (1988) 934.

V.V. Vladimirski, Dokl. Akad. Nauk. SSSR 31, 222 (1941); reprinted in B. Markovski, S.I. Vinitsky (eds) Topological Phases in Quantum Theory, World Scientific, Singapore (1989).

R. Dandoloff, Berry’s phase and Fermi–Walker parallel transport, Phys. Lett. A 139 (12) (1989) 19.

Y.A. Kravtsov and Y.I. Orlov, Geometrical Optics of Inhomogeneous Media (Nauka, Moscow, 1980; Springer-Verlag, Berlin, 1990).

E.M. Frins, W. Dultz, Rotation of the polarization plane in optical fibers, J. Lightwave Technol. 15 (1) (1997) 144.

Comtet, On the Landau Hall levels on the hyperbolic plane, Ann. Phys. 173 (1987) 185.

M. Barros, A. Romero, J.L. Cabrerizo, M. Fern´andez, The Gauss-Landau–Hall problem on

Riemanniansurfaces. J. Math. Phys. 2005,46.

M. Barros, A. Romero, J.L. Cabrerizo, M. Fernàndez, The Gauss-Landau–Hall problem on Riemanniansurfaces. J. Math. Phys. 2005,46.

T. Adachi, Kahler magnetic on a complex projective space, Proc. Jpn. Acad. Ser. A Math. Sci. 70 (1994) 12.

T. Adachi, Kahler magnetic flow for a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995) 473.

J.L Cabrerizo, M Fernandez and J.S. Gomez, The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A: Math. Theor. 42 (2009) 195201 (10pp).

M. Barros, J.L. Cabrerizo, M. Fern´andez, A. Romero, Magnetic vortex flament flows. J. Math. Phys. 48 (2007) 1-27.

M. Barros, Magnetic helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125(5) (1997) 1503-1509.

T. Sunada, Magnetic flows on a Riemann surface. In Proceedings of the KAIST Mathematics Workshop:Analysis and Geometry, Taejeon, Korea, 3-6 August 1993; KAIST: Daejeon, Korea, 1993.

Z. Ozdemir, A New Calculus for the Treatment of Rytov’s Law in the Optical Fiber, Optik - International Journal for Light and Electron Optics. 216(2020), 164892.

Z. Bozkurt, ˙I. Gok, Y. Yaylı F.N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds. J. Math. Phys. 55(2014) 053501.

T. Korpinar, R.C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. Journal of Modern Optics, https://doi.org/10.1080/09500340.2019.1579930.

J.L. Cabrerizo, Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys. 20 (2013)440-450.

Z. Ozdemir, G. Cansu, Y. Yaylı, Kinematic modeling of Rytov’s law and electromagnetic ¨

curves in the optical fiber based on elliptical quaternion algebra, Optik- International Journal for Light and Electron Optics. Doi:https://dx.doi.org/10.1016/j.ijleo.2021.166334.

M. Inc, T. Korpinar, Z. Körpinar, D Baleanu, R.C. Demirkol, New approach for propagated light with optical solitons by optical fiber in pseudohyperbolic space H20, Math. Meth. Appl.

Sci. 1–12 (2021).

H. Ceyhan, Z. Ozdemir, I. Gok, F. Nejat Ekmekci, Electromagnetic curves and rotation of the polarization plane through alternative moving frame, Eur. Phys. J. Plus 135, 867 (2020).

Z. Korpinar, T. Körpinar, Optical hybrid electric and magnetic B-phase with Landau Lifshitz approach, 247, 167917 (2021).

Z. Korpinar, R.C. Demirkol, T. Körpinar, Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD 242, 167302 (2021).

T. Korpinar, Z. Körpinar, R.C. Demirkol, Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach, Optik, 235 (2021), 166444.

B. Yılmaz, A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus, 247 (2021), 168026.

N. Ertug Gurbüz, Three geometric phases with the visco-Da Rios equation for the hybrid frame in R^3_1, Optik, 248 (2021), 168116.

N. Ertug Gurbüz, The evolution of the electric field with Frenet frame in Lorentzian Lie groups, Optik, 247 (2021), 167989.

N. Ertug Gurbüz, The variation of the electric field along optic fiber for null Cartan and pseudo-null frames, International Journal of Geometric Methods in Modern Physics 18(8), 2021.

F. Karakus, Y. Yaylı, The Fermi–Walker Derivative in Minkowski Space E^3_1, Advances in Applied Clifford Algebras, 27, 1353-1368.

M.Brozos-Vazquez, E. Garcıa-Rio, P. Gilkey, S. Nikcevi c, R. Vazquez-Lorenzo, The Geometry of Walker Manifolds, SteveG. Krantz (Ed.), Synthesis Lectures on Mathematics and Statistics, Washington University, St. Louis, 2009.

Z.Dusek, O. Kowalski, Light-like homogeneous geodesics and the geodesic lemma for any signature, Publ. Math. Debrecen71 (1–2) (2007) 245–252.

P.R. Law, Y. Matsushita, Real AlphaBeta-geometries and Walker geometry, J. Geom. Phys. 65 (2013) 35–44.

A.A.Salimov, A note on the Goldberg conjecture of Walker manifolds, Int. J. Geom. Methods Mod. Phys. 8 (5) (2011)925–928.

K.L. Duggal, A. Bejancu, Lightlike Submanifolds of Pseudo-Riemannian Manifolds and Applications, Mathematics and Its Applications, vol. 364, Kluwer Academic Publishers Group,

Dordrecht, 1996.

R. Abounasr, A. Belhaj, J. Rasmussen, and E. H. Saidi, Superstring theory on pp waves with ADE geometries, J. Phys. A 39 (2006), 2797–2841. DOI: 10.1088/0305-4470/39/11/015

J. Kerimo, AdS pp-waves, J. High Energy Phys. (2005), 025, 18 pp.DOI: 10.1088/1126-6708/2005/09/025

J. Klusoˇn, R. I. Nayak, and K. L. Panigrahi, D-brane dynamics in a plane wave background, Phys. Rev. D 73 (2006), no. 6, 066007, 10 pp. DOI: 10.1103/PhysRevD.73.066007

J. Michelson, and X. Wu, Dynamics of antimembranes in the maximally supersymmetric eleven-dimensional pp wave, J. High Energy Phys. (2006), 028, 37 pp. (electronic). DOI:

1088/1126-6708/2006/01/028

G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007), 1279–1291. DOI: 10.1016/j.geomphys.2006.10.005

M. Chaichi, E. Garc´ıa-R´ıo, and M. E. Vazquez-Abal, Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A 38 (2005), 841–850. DOI: 10.1088/0305-

/38/4/005

Th.Leistner,Screen bundles of Lorentzian manifolds and some generalizations of pp-waves, J. Geom. Phys. 56 (2006), 2117–2134. DOI: 10.1016/j.geomphys.2005.11.010

V. Pravda, A. Pravdova, A. Coley, and R. Milson, All spacetimes with vanishing curvature invariants, Classical Quantum Gravity 19 (2002), 6213–6236. DOI: 10.1088/0264-9381/19/23/318

C. Bejan, S. Druta-Romaniuc, Walker manifolds and Killing magnetic curves. Differential Geometry and Its Applications, 35(2014), 106-116.

DOI: https://doi.org/10.22190/FUMI220927046O

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)