LAGRANGE SPACES WITH GENERALIZED $(\gamma,\,\beta)$-METRIC

Suresh Kumar Shukla

DOI Number
-
First page
201
Last page
212

Abstract


The present paper deals with the differential geometry of a Lagrange space endowed with  generalized $(\gamma, \beta)$-metric, where $\gamma$ is an $m^{th}$-root  metric and $\beta$ is a 1-form. We obtain fundamental tensor, its inverse, Euler-Lagrange equations, semispray coefficients and canonical nonlinear connection for a Lagrange space with $(\gamma, \beta)$-metric. Several other properties of such space are also discussed.

Keywords


Lagrange spaces, Generalized $(\gamma,\beta)$-metric, Euler-Lagrange equations, Canonical semispray, Nonlinear connection.

Full Text:

PDF

References


B. Nicolaescu, textit{The variational problem in Lagrange spaces endowed with $(alpha, beta)$-metrics}, Proceedings of the 3rd International Colloq. in Engg. and Numerical Physics, Oct. 7-9, 2004, Bucharest, Romania (2005), 202-207.

B. Nicolaescu, textit{Nonlinear connection in Lagrange spaces with $(alpha, beta)$-metrics}, Diff. Geom. Dyn. Sys., 8 (2006), 196-199.

P. L. Antonelli (ed.), textit{Handbook of Finsler geometry}, Kluwer Acad. Publ., Dordrecht, 2003.

R. Miron, textit{Finsler-Lagrange spaces with $(alpha, beta)$-metrics and Ingarden spaces}, Rep. Math. Phys., 58(3) (2006), 417-431.

R. Miron and M. Anastasiei, textit{The geometry of Lagrange spaces: Theory and Applications}, Kluwer Acad. Publ., 1994.

Suresh K. Shukla and P. N. Pandey, textit{Rheonomic Lagrange spaces with $(alpha, beta)$-metric}, Int. J. Pure Appl. Math., 83(3) (2013), 425-438.

Suresh K. Shukla and P. N. Pandey, textit{Lagrange spaces with $(gamma, beta)$-metric}, Geometry, vol. 2013, Article ID 106393, 7 pages, 2013. doi:10.1155/2013/106393.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)