THE N-DUAL STRUCTURE OF THE SPACE OF N-SUMMABLE SEQUENCE SPACES
Abstract
n-norm and they have been studied in [5, 6, 7].
Keywords
Full Text:
PDFReferences
A. G. White: 2-Banach spaces. Math. Nachr. 42 (1969), 43-69.
A. Malceski: l1 as n-normed space. Math. Bilten. 21 (1997), 103-110.
H. Gunawan and M. Mashadi: On n-normed spaces. Int. Jour. Math. Math.
Sci. 27 (2001), 631-639.
H. Gunawan: The space of p-summable sequences and its natural n-norm. Bull.
Austral. Math. Soc. 64 (2001), 137-147.
P. K. Singh and J. K. Srivastava: A study of an n-norm on l^p space. Int.
Journal. of Math. Archive. 6(2) (2015), 35-41.
P. K. Singh and J. K. Srivastava: A study of Cauchy sequences defined in
the n- normed space of p-summable sequences. To appear in J. of the Ramanujan
Mathematical Society.
P. K. Singh and J. K. Srivastava: Equivalent norms derived by non-equivalent
n-norms on the space of p-summable sequences. To Appear in Proc. Indian Acad.
Sci. (Math. Sci.).
S. Gahler: Linear 2-normierte Raume. Math. Nachr. 28 (1964), 1-43.
S. M. Gozali, H. Gunawan and O. Neswan: On n-norms and bounded n-linear
functionals in a Hilbert space. Ann. Funct. Anal. 1(1) (2010), 72-79.
Yosafat E. P. Pangalela, H. Gunawan and Bandung: The n-dual space
of the space of p-summable sequences. Mathematica Bohemica. 138(4) (2013),
-448.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)