COUPLED FIXED POINT THEOREMS FOR CONTRACTIVE TYPE CONDITION IN PARTIAL METRIC SPACES WITH APPLICATIONS
Abstract
Keywords
Full Text:
PDFReferences
bibitem{AKR10} {sc M. Abbas, M. Ali Khan {rm and} S. Radenovi$acute{c}$}: emph{Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings}, Appl. Math. Comput. {bf 217} (2010), 195--202.
bibitem{AEO08} {sc R. P. Agarwal, M. A. El-Gebeily {rm and} D. O'Regan}: emph{Generalized contraction in partially ordered metric spaces}, Applicable Anal. {bf 87(1)} (2008), 109--116.
bibitem{AAV13} {sc J. Ahmad, M. Arshad {rm and} C. Vetro}: emph{On a theorem of Khan in a generalized metric space}, Int. J. Anal. (2013)(2). DOI:10.1155/2013/852727.
bibitem{ASS10} {sc I. Altun, F. Sola {rm and} H. Simsek}: emph{Generalized contractions on partial metric spaces}, Topology and its Appl. {bf 157} (2010), 2778--2785.
bibitem{A11} {sc H. Aydi}: emph{Some coupled fixed point results on partial metric spaces}, International J. Math. Math. Sci. 2011, Article ID 647091, 11 pages.
bibitem{AAV12} {sc H. Aydi, M. Abbas {rm and} C. Vetro}: emph{Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces}, Topology and Its Appl. {bf 159} (2012), No. 14, 3234--3242.
bibitem{APS12} {sc H. Aydi, M. Postolache {rm and} W. Shatanawi}: emph{Coupled fixed point results for $(psi,phi)$-weakly contractive mappings in ordered $G$-metric spaces}, Comput. Math. Appl. {bf 63} (2012), 298--309.
bibitem{B22} {sc S. Banach}: emph{Sur les operation dans les ensembles abstraits et leur application aux equation integrals}, Fund. Math.
{bf 3}(1922), 133--181.
bibitem{BL06} {sc T. Gnana Bhaskar {rm and} V. Lakshmikantham}: emph{Fixed point theorems in partially ordered metric spaces and applications}, Nonlinear Analysis: TMA, {bf 65(7)} (2006), 1379--1393.
bibitem{CL09} {sc L. Ciric {rm and} V. Lakshmikantham}: emph{Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces}, Nonlinear Analysis: TMA, {bf 70(12)} (2009), 4341--4349.
bibitem{CMP13} {sc S. Chandok, Z. Mustafa {rm and} M. Postolache}: emph{Coupled common fixed point theorems for mixed $g$-monotone mappings in partially ordered $G$-metric spaces}, U. Politech. Buch.: Ser. A {bf 75(4)} (2013), 13--26.
bibitem{C13} {sc S. Chandok}: emph{Coupled common fixed point theorems for a contractive condition of rational type in ordered metric spaces}, J. Appl. Math. Informatics {bf 31} (2013), No. 5-6, 643--649.
bibitem{CKK15} {sc S. Chandok, D. Kumar {rm and} M. S. Khan}: emph{Some results in partial metric space using auxiliary functions}, Applied Math. E-Notes {bf 15} (2015), 233--242.
bibitem{CNT15} {sc S. Chandok, T. D. Narang {rm and} M. A. Taoudi}: emph{Some coupled fixed point theorems for mappings satisfying a generalized contractive condition of rational type}, Palestine J. Math. {bf 4(2)} (2015), 360--366.
bibitem{C15} {sc S. Chandok}: emph{Some fixed point theorems for $(alpha,beta)$-admisible Geraghty type contractive mappings and related results}, Math. Sci. {bf 9} (2015), 127--135.
bibitem{CK10} {sc B. S. Choudhury {rm and} A. Kundu}: emph{A coupled coicidence point result in partially ordered metric spaces for compatible mappings}, Nonlinear Anal.: TMA, {bf 73} (2010), 2524--2531.
bibitem{CMP13a} {sc B. S. Choudhury, N. Metiya {rm and} M. Postolache}: emph{A generalized weak contraction principle with applications to coupled coincidence point problems}, Fixed Point Theory Appl. (2013), {bf 2013:152}.
bibitem{E62} {sc M. Edelstein}: emph{On fixed points and periodic points under contraction mappings}, J. Lond. Math. Soc. {bf 37} (1962), 74--79.
bibitem{GL87} {sc D. Guo {rm and} V. Lakshmikantham}: emph{Coupled fixed point of nonlinear operator with application}, Nonlinear Anal. TMA., {bf 11} (1987), 623--632.
bibitem{HR73} {sc G. C. Hardy {rm and} T. Rogers}: emph{A generalization of fixed point theorem of S. Reich}, Can. Math. Bull. {bf 16} (1973), 201--206.
bibitem{H99} {sc R. Heckmann}: emph{Approximation of metric spaces by partial metric spaces}, Appl. Categ. Structures, {bf 7}, No. 1-2, (1999), 71--83.
bibitem{H10} {sc S. Hong}: emph{Fixed points of multivalued operators in ordered metric spaces with applications}, Nonlinear Anal., TMA., {bf 72(11)} (2010), 3929--3942.
bibitem{K69} {sc R. Kannan}: emph{Some results on fixed points-II}, Amer. Math. Mon. {bf 76} (1969), 71--76.
bibitem{KST13} {sc E. Karapinar, W. Shatanawi {rm and} K. Tas}: emph{Fixed point theorems on partial metric spaces involving rational expressions}, Miskolc Math. Notes {bf 14} (2013), 135--142.
bibitem{KR18} {sc B. Khomdaram {rm and} Y. Rohen}: emph{Some common coupled fixed point theorems in $S_{b}$-metric spaces}, Fasciculi Math. {bf 60} (2018), 79--92.
bibitem{KC13} {sc J. K. Kim {rm and} S. Chandok}: emph{Coupled common fixed point theorems for generalized nonlinear contraction mappings with the mixed monotone property in partially ordered metric spaces}, Fixed Point Theory Appl. (2013), {bf 2013:307}.
bibitem{KOL17} {sc J. K. Kim, G. A. Okeke {rm and} W. H. Lim}: emph{Common coupled fixed point theorems for $w$-compatible mappings in partial metric spaces}, Global J. Pure Appl. Math. {bf 13(2)} (2017), 519--536.
bibitem{K22} {sc K. S. Kim}: emph{Coupled fixed point theorems under new coupled implicit relation in Hilbert spaces}, Demonstratio Math. {bf 55} (2022), 81--89.
bibitem{KCDD21} {sc P. Konar, S. Chandok, S. Dutta {rm and} M. De la sen}: emph{Coupled optimal results with an application to integral equations}, Axioms {bf 2021}, 10, 73. (https//:doi.org/10.3390/axioms 10020073)
bibitem{K01} {sc H. P. A. K$ddot{u}$nzi}: emph{Nonsymmetric distances and their associated topologies about the origins of basic ideas in the area of asymptotic topology}, Handbook of the History Gen. Topology (eds. C.E. Aull and R. Lowen), Kluwer Acad. Publ., {bf 3} (2001), 853--868.
bibitem{LT11a} {sc N. V. Luong {rm and} N. X. Thuan}: emph{Coupled fixed points in partially ordered metric spaces and application}, Nonlinear Anal. {bf 74} (2011), 983--992.
bibitem{LT11b} {sc N. V. Luong {rm and} N. X. Thuan}: emph{Fixed point theorems for generalized weak contractions satisfying rational expressions in ordered metric spaces}, Fixed Point Theory Appl., {bf 2011}(46), (2011).
bibitem{LT11} {sc N. V. Luong {rm and} N. X. Thuan}: emph{Coupled fixed points theorems for mixed monotone mappings and an application to integral equations}, Comput. Math. Appl. {bf 62} (2011), 4238--4248.
bibitem{MSS13} {sc H. P. Masiha, F. Sabetghadam {rm and} N. Shahzad}: emph{Fixed point theorems in partial metric spaces with an application}, Filomat {bf 27(4)}(2013), 617--624.
bibitem{M92} {sc S. G. Matthews}: emph{Partial metric topology}, Research report 2012, Dept. Computer Science, University of Warwick, 1992.
bibitem{M94} {sc S. G. Matthews}: emph{Partial metric topology}, Proceedings of the 8th summer conference on topology and its applications, Annals of the New York Academy of Sciences, {bf 728} (1994), 183--197.
bibitem{M81} {sc B. Monjardet}: emph{Metrics on partially ordered sets: A survey}, Discrete Math. {bf 35} (1981), 173--184.
bibitem{NS11} {sc H. K. Nashine {rm and} W. Shatanawi}: emph{Coupled common fixed point theorems for pair of commuting in partially ordered complete metric spaces}, Comput. Math. Appl. {bf 62} (2011), 1984--1993.
bibitem{NK12} {sc H. K. Nashine {rm and} Z. Kadelburg}: emph{Partially ordered metric spaces, rational contractive expressios and couple fixed points}, Nonlinear Funct. Anal. Appl. {bf 17(4)} (2012), 471--489.
bibitem{N12} {sc H. K. Nashine}: emph{Coupled common fixed point results in ordered $G$-metric spaces}, J. Nonlinear Sci. Appl. {bf 1} (2012), 1--13.
bibitem{NKR13} {sc H. K. Nashine, Z. Kadelburg {rm and} S. Radenovi$acute{c}$}: emph{Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces}, Math. Comput. Model. {bf 57(9-10)} (2013), 2355--2365.
bibitem{NKSS16} {sc H. K. Nashine, J. K. Kim, A. K. Sharma {rm and} G. S. Saluja}: emph{Some coupled fixed point without mixed monotone mappings}, Nonlinear Funct. Anal. Appl. {bf 21(2)} (2016), 235--247.
bibitem{NL07} {sc J. J. Nieto {rm and} R. R. Lopez}: emph{Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equation}, Acta Math. Sinica, English Series, {bf 23} (2007), No. 12, 2205--2212.
bibitem{OOA12} {sc J. O. Olaleru, G. A. Okeke {rm and} H. Akewe}: emph{Coupled fixed point theorems for generalized $varphi$-mappings satisfying contractive condition of integral type on cone metric spaces}, Int. J. Math. Model. Comput. {bf 2(2)} (2012), 87--98.
bibitem{PSNP17} {sc R. Pant, R. Shukla, H. K. Nashine {rm and} R. Panicker}: emph{Some new fixed point theorems in partial metric spaces with applications}, J. Function spaces, {bf 2017}, Article ID 1072750, 13 pages.
bibitem{R14} {sc S. Radenovi$acute{c}$}: emph{${it Bhaskar-Lakshmikantham}$ type results for monotone mappings in partially ordered metric spaces}, Int. J. Nonlinear Anal. {bf 5} (2014), 37--49.
bibitem{RR04} {sc A. C. M. Ran {rm and} M. C. B. Reurings}: emph{A fixed point theorem in partially ordered sets and some application to matrix equations}, Proc. Amer. Math. Soc. {bf 132} (2004), 1435--1443.
bibitem{RK20} {sc N. Seshagiri Rao {rm and} K. Kalyani}: emph{Coupled fixed point theorems in partially ordered metric spaces}, Fasciculi Math. {bf 64} (2020), 77--89.
bibitem{R71} {sc S. Reich}: emph{Some remarks concerning contraction mappings}, Can. Math. Bull. {bf 14} (1971), 121--124.
bibitem{RZ01} {sc S. Reich {rm and} A. J. Zaslavski}: emph{Well posedness of fixed point problem}, Far East J. Math. special volume part III (2001), 393--401.
bibitem{SMS09} {sc F. Sabetghadam, H. P. Mashiha {rm and} A. H. Sanatpour}: emph{Some coupled fixed point theorems in cone metric spaces}, Fixed Point Theory Appl. (2009), Article ID 125426, 8 pages.
bibitem{S10} {sc B. Samet}: emph{Coupled fixed point theorems for a generalized ${it Meir-Keeler}$ contractions in a partially ordered metric spaces}, Nonlinear Anal. {bf 72(12)} (2010), 4508--4517.
bibitem{SY10} {sc B. Samet {rm and} H. Yazidi}: emph{Coupled fixed point theorems in a partial order $epsilon$-chainable metric spaces}, J. Math. Comput. Sci. {bf 1(3)} (2010), 142--151.
bibitem{SY} {sc B. Samet {rm and} H. Yazidi}: emph{Coupled fixed point theorems for contraction involving rational expressions in partially ordered metric spaces}, priprint, arXiv:1005.3142v1 [math GN].
bibitem{SG17} {sc S. Sedghi {rm and} A. Gholidehneh}: emph{Coupled fixed point theorems in $S_{b}$-metric spaces}, Nonlinear Funct. Anal. Appl. {bf 22(2)} (2017), 217--228.
bibitem{SC21} {sc S. Sharma {rm and} S. Chandok}: emph{Existence of best proximity point with an application to nonlinear intigral equations}, J. Math. (2021), Article ID 3886659, 7 pages. DOI: 10.1155/2021/3886659.
bibitem{SSA12} {sc W. Shatanawi, B. Samet {rm and} M. Abbas}: emph{Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces}, Math. Comput. Modell. {bf 55} (2012), Nos. 3-4, 680--687.
bibitem{SP13} {sc W. Shatanawi {rm and} M. Posolache}: emph{Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces}, Fixed Point Theory Appl. (2013), {bf 2013:60}. DOI: 10.1186/1687-1812-2013-60.
bibitem{SC88} {sc M. R. Singh {rm and} A. K. Chatterjee}: emph{Fixed point theorems}, Commun. Fac. Sci. Univ. Ank., Series A1 {bf 37} (1988), 1--4.
bibitem{S74} {sc D. R. Smart}: emph{Fixed point theorems}, Cambridge University Press, Cambridge, 1974.
bibitem{V05} {sc O. Valero}: emph{On Banach fixed point theorems for partial metric spaces}, Appl. Gen. Topl. {bf 6(2)} (2005), 229--240.
bibitem{W75} {sc E. S. Wolk}: emph{Continuous convergence in partially ordered sets}, Gen. Topol. Appl. {bf 5} (1975), 221--234.
bibitem{W73} {sc C. S. Wong}: emph{Common fixed points of two mappings}, Pac. J. Math. {bf 48} (1973), 299--312.
DOI: https://doi.org/10.22190/FUMI230204037S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)