CURVATURE TENSORS AND PSEUDOTENSORS IN A GENERALIZED FINSLER SPACE

Milan Lj. Zlatanovic, Svetislav M. Mincic, Milos Z. Petrovic

DOI Number
-
First page
741
Last page
752

Abstract


We examine relations between the curvature tensor of associated symmetric connection and curvature tensors, curvature pseudotensors and derived curvature tensors of non-symmetric affine connection in Rund's sense.


Keywords


generalized Finsler spaces, non-symmetric connection, curvature tensors, curvature pseudotensors, derived curvature tensors.

Full Text:

PDF

References


bibitem{Cartan} {sc E. Cartan:/} {it Les Espaces de Finsler./} Paris, 1934.

bibitem{Milica}{sc M.D. Cvetkovi' c, M.Lj. Zlatanovi' c:}

{it New Cartan's tensors and pseudotensors in a Generalized Finsler Space.} Filomat {bf 28}(2014),

--117.

bibitem{Eisenhart} { L.P. Eisenhart}: {it Generalized

Riemannian Spaces}. Proc. Nat. Acad. Sci. USA {bf 37}(1951),

--315.

bibitem{DerivedCurvatureTensors}

{sc S.M. Miniv ci'c:}

{it Curvature tensors of the space of non-symmetric affine connexion, obtained from the curvature pseudotensors.} Mat. Vesnik {bf 28}(1976), 421--435.

bibitem{CommutationFormulasForDeltaDifferentiation}{ S.M. Miniv ci'c, M.Lj. Zlatanovi'c:}

{it Commutation formulas for $delta$-differentation in a generalized Finsler space.}

{Kragujevac Journal of Mathematics, {bf 35}(2011), 277--289.}

bibitem{DerivedCurvatureTensorsInGFN}

{sc S.M. Miniv ci'c, M.Lj. Zlatanovi'c:}

{it Derived curvature tensors in generalized Finsler space.}

Differential Geometry-Dynamical Systems {bf 13}(2011), 179--190.

bibitem{NewCommutationFormulas}label{RicciIdentities}

{sc S.M. Minv ci'c}: {it New commutation formulas in the non-symmetric affine connexion space}. Publ.

Inst. Math. (Beograd) (N.S) {bf 22}(1977), 189--199.

bibitem{NewCommutationFormulasForDeltaDifferentiation}{sc S.M. Miniv ci'c, M.Lj. Zlatanovi'c:}

{it New commutation formulas for $delta$-differentation in a generalized Finsler space.}

Differential Geometry-Dynamical Systems {bf 12}(2010), 145--157.

bibitem{RicciIdentities}label{RicciIdentities}

{sc S.M. Minv ci'c}: {it Ricci identities in the space of

non-symmetric affine connexion}. Mat. Vesnik {bf 25}(1973), 161--172

bibitem{Rund} {sc H. Rund}: {it The Differential Geometry of Finsler Space}.

Springer-Verlag, Berlin-G"ottingen-Heidelberg, 1959.

bibitem{Shamihoke1} {sc A.C. Shamihoke}: {it A Note on a Curvature Tensor in a Generalized Finsler

Space.} Tensor N.S. {bf 15}(1964), 20--22.

bibitem{Shamihoke2} {sc A.C. Shamihoke}: {it Hypersurfaces of a Generalised Finsler Space.}

Tensor N.S. {bf 13} (1963), 129--144.

bibitem{Shamihoke3} {sc A.C. Shamihoke}: {it Parallelism and Covariant Differentiation in a Generalized Finsler Space of $n$ dimensions.} Riv. Mat. Univ. Parma II. Ser. 5(1964), 189--200.

bibitem{Shamihoke4} {sc A.C. Shamihoke}: {it Some Properties of a Curvature Tensors

in a Generalised Finsler Space.} Tensor N.S. {bf 12}(1962), 97--109.

bibitem{Identities}{sc M.Lj. Zlatanovi' c, S.M. Minv ci' c:}

{it Identities for curvature tensors in generalized Finsler space.} Filomat {bf 23}(2009), 34--42.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)