A RESULT ON THE CHERMAK-DELGADO MEASURE OF A FINITE GROUP
Abstract
In this short note, we describe finite groups all of whose non-trivial cyclic subgroups have the same Chermak-Delgado measure.
Keywords
Full Text:
PDFReferences
D. Bubboloni and G. Corsi Tani: p-groups with some regularity properties. Ric. di Mat. 49 (2000), 327-339.
D. Bubboloni and G. Corsi Tani: p-groups with all the elements of order p in the center. Algebra Colloq. 11 (2004), 181-190.
A. Chermak and A. Delgado: A measuring argument for finite groups. Proc. AMS 107 (1989), 907-914.
G. Fasola and M. Tarnauceanu: Finite groups with large Chermak-Delgado lattices. to appear in Bull. Aus. Math. Soc., DOI: https://doi.org/10.1017/S0004972722000806.
I.M. Isaacs: Finite group theory. Amer. Math. Soc., Providence, R.I., 2008.
R. Schmidt: Subgroup lattices of groups. de Gruyter Expositions in Mathematics 14, de Gruyter, Berlin, 1994.
M. Suzuki: Group theory. I, II, Springer Verlag, Berlin, 1982, 1986.
M. Tarnauceanu: Finite groups with a certain number of values of the Chermak-Delgado measure. J. Algebra Appl. 19 (2020), article ID 2050088.
A. Morresi Zuccari, V. Russo and C.M. Scoppola: The Chermak-Delgado measure in finite p-groups. J. Algebra 502 (2018), 262-276.
DOI: https://doi.org/10.22190/FUMI230303004T
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)