A REPRESENTATION FORMULA FOR THE RESOLVENT OF CONFORMABLE FRACTIONAL STURM-LIOUVILLE OPERATOR

Bilender P. Allahverdiev, Hüseyin Tuna, Yüksel Yalçınkaya

DOI Number
https://doi.org/10.22190/FUMI230310009A
First page
141
Last page
151

Abstract


In this study, the resolvent of the conformable fractional Sturm–Liouville operator is considered. An integral representation for the resolvent of this operator is obtained.


Keywords

resolvent operator, partial differential equations, comforable fractional integral.

Full Text:

PDF

References


T. Abdeljawad: On conformable fractional calculus. J. Comput Appl. Math. 279 (2015), 57–66.

M. Abu Hammad and R. Khalil: Abel’s formula and Wronskian for conformable fractional differential equations. Intern. J. Differ. Equ. Appl., 13 (3) (2014), 177–183.

M. Abu Hammad and R. Khalil: Conformable fractional heat differential equations. Intern. J. Pure. Appl. Math., 94 (2) (2014), 215–221.

B. P. Allahverdiev, H. Tuna and Y. Yalc¸ınkaya: Conformable fractional Sturm–Liouville equation. Math. Meth. Appl. Sci., 42(10) (2019), 3508–3526.

D. Baleanu, F. Jarad and E. U˘gurlu: Singular conformable sequential differential equations with distributional potentials. Quaest. (2018) Math., DOI:10.2989/16073606.2018.1445134.

P. L. Butzer and U. Westphal: An Introduction to Fractional Calculus. Applications of Fractional Calculus in Physics, World Scientic, New Jersey, USA, 2000.

T. Gulsen, E. Yilmaz and S. Goktas: Conformable fractional Dirac system on time scales. J Inequal Appl 2017, 161 (2017). https://doi.org/10.1186/s13660-017-1434-8.

R. Khalil and H. Abu-Shaab: Solution of some conformable fractional differential equations. Inter. J. Pure Appl. Math., 103(4) (2015), 667–673.

R. Khalil, M. Al Horani, A. Yousef and M., Sababheh: A new definition of fractional derivative. J. Comput. Appl. Math., 264 (2014), 65–70.

B. M. Levitan and I. S. Sargsjan: Sturm–Liouville and Dirac Operators. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).

E. C. Titchmarsh: Eigenfunction Expansions Associated with Second-order Differential Equations. Part I. Second Edition Oxford, Great Britain: Clarendon Press, 1962.

E. Yilmaz, T. Gulsen and E. S. Panakhov: Existence results for a conformable type Dirac system on time scales in quantum physics. Appl. Comput. Math., 21(3) (2022), 279–291.




DOI: https://doi.org/10.22190/FUMI230310009A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)